stm32f407-openocd/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_hal_dsi.c

3138 lines
96 KiB
C

/**
******************************************************************************
* @file stm32f4xx_hal_dsi.c
* @author MCD Application Team
* @brief DSI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the DSI peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State and Errors functions
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The DSI HAL driver can be used as follows:
(#) Declare a DSI_HandleTypeDef handle structure, for example: DSI_HandleTypeDef hdsi;
(#) Initialize the DSI low level resources by implementing the HAL_DSI_MspInit() API:
(##) Enable the DSI interface clock
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the DSI interrupt priority
(+++) Enable the NVIC DSI IRQ Channel
(#) Initialize the DSI Host peripheral, the required PLL parameters, number of lances and
TX Escape clock divider by calling the HAL_DSI_Init() API which calls HAL_DSI_MspInit().
*** Configuration ***
=========================
[..]
(#) Use HAL_DSI_ConfigAdaptedCommandMode() function to configure the DSI host in adapted
command mode.
(#) When operating in video mode , use HAL_DSI_ConfigVideoMode() to configure the DSI host.
(#) Function HAL_DSI_ConfigCommand() is used to configure the DSI commands behavior in low power mode.
(#) To configure the DSI PHY timings parameters, use function HAL_DSI_ConfigPhyTimer().
(#) The DSI Host can be started/stopped using respectively functions HAL_DSI_Start() and HAL_DSI_Stop().
Functions HAL_DSI_ShortWrite(), HAL_DSI_LongWrite() and HAL_DSI_Read() allows respectively
to write DSI short packets, long packets and to read DSI packets.
(#) The DSI Host Offers two Low power modes :
(++) Low Power Mode on data lanes only: Only DSI data lanes are shut down.
It is possible to enter/exit from this mode using respectively functions HAL_DSI_EnterULPMData()
and HAL_DSI_ExitULPMData()
(++) Low Power Mode on data and clock lanes : All DSI lanes are shut down including data and clock lanes.
It is possible to enter/exit from this mode using respectively functions HAL_DSI_EnterULPM()
and HAL_DSI_ExitULPM()
(#) To control DSI state you can use the following function: HAL_DSI_GetState()
*** Error management ***
========================
[..]
(#) User can select the DSI errors to be reported/monitored using function HAL_DSI_ConfigErrorMonitor()
When an error occurs, the callback HAL_DSI_ErrorCallback() is asserted and then user can retrieve
the error code by calling function HAL_DSI_GetError()
*** DSI HAL driver macros list ***
=============================================
[..]
Below the list of most used macros in DSI HAL driver.
(+) __HAL_DSI_ENABLE: Enable the DSI Host.
(+) __HAL_DSI_DISABLE: Disable the DSI Host.
(+) __HAL_DSI_WRAPPER_ENABLE: Enables the DSI wrapper.
(+) __HAL_DSI_WRAPPER_DISABLE: Disable the DSI wrapper.
(+) __HAL_DSI_PLL_ENABLE: Enables the DSI PLL.
(+) __HAL_DSI_PLL_DISABLE: Disables the DSI PLL.
(+) __HAL_DSI_REG_ENABLE: Enables the DSI regulator.
(+) __HAL_DSI_REG_DISABLE: Disables the DSI regulator.
(+) __HAL_DSI_GET_FLAG: Get the DSI pending flags.
(+) __HAL_DSI_CLEAR_FLAG: Clears the DSI pending flags.
(+) __HAL_DSI_ENABLE_IT: Enables the specified DSI interrupts.
(+) __HAL_DSI_DISABLE_IT: Disables the specified DSI interrupts.
(+) __HAL_DSI_GET_IT_SOURCE: Checks whether the specified DSI interrupt source is enabled or not.
[..]
(@) You can refer to the DSI HAL driver header file for more useful macros
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_DSI_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_DSI_RegisterCallback() to register a callback.
[..]
Function HAL_DSI_RegisterCallback() allows to register following callbacks:
(+) TearingEffectCallback : DSI Tearing Effect Callback.
(+) EndOfRefreshCallback : DSI End Of Refresh Callback.
(+) ErrorCallback : DSI Error Callback
(+) MspInitCallback : DSI MspInit.
(+) MspDeInitCallback : DSI MspDeInit.
[..]
This function takes as parameters the HAL peripheral handle, the callback ID
and a pointer to the user callback function.
[..]
Use function HAL_DSI_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_DSI_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the callback ID.
[..]
This function allows to reset following callbacks:
(+) TearingEffectCallback : DSI Tearing Effect Callback.
(+) EndOfRefreshCallback : DSI End Of Refresh Callback.
(+) ErrorCallback : DSI Error Callback
(+) MspInitCallback : DSI MspInit.
(+) MspDeInitCallback : DSI MspDeInit.
[..]
By default, after the HAL_DSI_Init and when the state is HAL_DSI_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_DSI_TearingEffectCallback(), HAL_DSI_EndOfRefreshCallback().
Exception done for MspInit and MspDeInit functions that are respectively
reset to the legacy weak (surcharged) functions in the HAL_DSI_Init()
and HAL_DSI_DeInit() only when these callbacks are null (not registered beforehand).
If not, MspInit or MspDeInit are not null, the HAL_DSI_Init() and HAL_DSI_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand).
[..]
Callbacks can be registered/unregistered in HAL_DSI_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_DSI_STATE_READY or HAL_DSI_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_DSI_RegisterCallback() before calling HAL_DSI_DeInit()
or HAL_DSI_Init() function.
[..]
When The compilation define USE_HAL_DSI_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
#ifdef HAL_DSI_MODULE_ENABLED
#if defined(DSI)
/** @addtogroup DSI
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/** @addtogroup DSI_Private_Constants
* @{
*/
#define DSI_TIMEOUT_VALUE ((uint32_t)1000U) /* 1s */
#define DSI_ERROR_ACK_MASK (DSI_ISR0_AE0 | DSI_ISR0_AE1 | DSI_ISR0_AE2 | DSI_ISR0_AE3 | \
DSI_ISR0_AE4 | DSI_ISR0_AE5 | DSI_ISR0_AE6 | DSI_ISR0_AE7 | \
DSI_ISR0_AE8 | DSI_ISR0_AE9 | DSI_ISR0_AE10 | DSI_ISR0_AE11 | \
DSI_ISR0_AE12 | DSI_ISR0_AE13 | DSI_ISR0_AE14 | DSI_ISR0_AE15)
#define DSI_ERROR_PHY_MASK (DSI_ISR0_PE0 | DSI_ISR0_PE1 | DSI_ISR0_PE2 | DSI_ISR0_PE3 | DSI_ISR0_PE4)
#define DSI_ERROR_TX_MASK DSI_ISR1_TOHSTX
#define DSI_ERROR_RX_MASK DSI_ISR1_TOLPRX
#define DSI_ERROR_ECC_MASK (DSI_ISR1_ECCSE | DSI_ISR1_ECCME)
#define DSI_ERROR_CRC_MASK DSI_ISR1_CRCE
#define DSI_ERROR_PSE_MASK DSI_ISR1_PSE
#define DSI_ERROR_EOT_MASK DSI_ISR1_EOTPE
#define DSI_ERROR_OVF_MASK DSI_ISR1_LPWRE
#define DSI_ERROR_GEN_MASK (DSI_ISR1_GCWRE | DSI_ISR1_GPWRE | DSI_ISR1_GPTXE | DSI_ISR1_GPRDE | DSI_ISR1_GPRXE)
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
static void DSI_ConfigPacketHeader(DSI_TypeDef *DSIx, uint32_t ChannelID, uint32_t DataType, uint32_t Data0,
uint32_t Data1);
static HAL_StatusTypeDef DSI_ShortWrite(DSI_HandleTypeDef *hdsi,
uint32_t ChannelID,
uint32_t Mode,
uint32_t Param1,
uint32_t Param2);
/* Private functions ---------------------------------------------------------*/
/** @defgroup DSI_Private_Functions DSI Private Functions
* @{
*/
/**
* @brief Generic DSI packet header configuration
* @param DSIx Pointer to DSI register base
* @param ChannelID Virtual channel ID of the header packet
* @param DataType Packet data type of the header packet
* This parameter can be any value of :
* @arg DSI_SHORT_WRITE_PKT_Data_Type
* @arg DSI_LONG_WRITE_PKT_Data_Type
* @arg DSI_SHORT_READ_PKT_Data_Type
* @arg DSI_MAX_RETURN_PKT_SIZE
* @param Data0 Word count LSB
* @param Data1 Word count MSB
* @retval None
*/
static void DSI_ConfigPacketHeader(DSI_TypeDef *DSIx,
uint32_t ChannelID,
uint32_t DataType,
uint32_t Data0,
uint32_t Data1)
{
/* Update the DSI packet header with new information */
DSIx->GHCR = (DataType | (ChannelID << 6U) | (Data0 << 8U) | (Data1 << 16U));
}
/**
* @brief write short DCS or short Generic command
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ChannelID Virtual channel ID.
* @param Mode DSI short packet data type.
* This parameter can be any value of @arg DSI_SHORT_WRITE_PKT_Data_Type.
* @param Param1 DSC command or first generic parameter.
* This parameter can be any value of @arg DSI_DCS_Command or a
* generic command code.
* @param Param2 DSC parameter or second generic parameter.
* @retval HAL status
*/
static HAL_StatusTypeDef DSI_ShortWrite(DSI_HandleTypeDef *hdsi,
uint32_t ChannelID,
uint32_t Mode,
uint32_t Param1,
uint32_t Param2)
{
uint32_t tickstart;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for Command FIFO Empty */
while ((hdsi->Instance->GPSR & DSI_GPSR_CMDFE) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Configure the packet to send a short DCS command with 0 or 1 parameter */
/* Update the DSI packet header with new information */
hdsi->Instance->GHCR = (Mode | (ChannelID << 6U) | (Param1 << 8U) | (Param2 << 16U));
return HAL_OK;
}
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DSI_Exported_Functions
* @{
*/
/** @defgroup DSI_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize and configure the DSI
(+) De-initialize the DSI
@endverbatim
* @{
*/
/**
* @brief Initializes the DSI according to the specified
* parameters in the DSI_InitTypeDef and create the associated handle.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param PLLInit pointer to a DSI_PLLInitTypeDef structure that contains
* the PLL Clock structure definition for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Init(DSI_HandleTypeDef *hdsi, DSI_PLLInitTypeDef *PLLInit)
{
uint32_t tickstart;
uint32_t unitIntervalx4;
uint32_t tempIDF;
/* Check the DSI handle allocation */
if (hdsi == NULL)
{
return HAL_ERROR;
}
/* Check function parameters */
assert_param(IS_DSI_PLL_NDIV(PLLInit->PLLNDIV));
assert_param(IS_DSI_PLL_IDF(PLLInit->PLLIDF));
assert_param(IS_DSI_PLL_ODF(PLLInit->PLLODF));
assert_param(IS_DSI_AUTO_CLKLANE_CONTROL(hdsi->Init.AutomaticClockLaneControl));
assert_param(IS_DSI_NUMBER_OF_LANES(hdsi->Init.NumberOfLanes));
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
if (hdsi->State == HAL_DSI_STATE_RESET)
{
/* Reset the DSI callback to the legacy weak callbacks */
hdsi->TearingEffectCallback = HAL_DSI_TearingEffectCallback; /* Legacy weak TearingEffectCallback */
hdsi->EndOfRefreshCallback = HAL_DSI_EndOfRefreshCallback; /* Legacy weak EndOfRefreshCallback */
hdsi->ErrorCallback = HAL_DSI_ErrorCallback; /* Legacy weak ErrorCallback */
if (hdsi->MspInitCallback == NULL)
{
hdsi->MspInitCallback = HAL_DSI_MspInit;
}
/* Initialize the low level hardware */
hdsi->MspInitCallback(hdsi);
}
#else
if (hdsi->State == HAL_DSI_STATE_RESET)
{
/* Initialize the low level hardware */
HAL_DSI_MspInit(hdsi);
}
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
/* Change DSI peripheral state */
hdsi->State = HAL_DSI_STATE_BUSY;
/**************** Turn on the regulator and enable the DSI PLL ****************/
/* Enable the regulator */
__HAL_DSI_REG_ENABLE(hdsi);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the regulator is ready */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_RRS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Set the PLL division factors */
hdsi->Instance->WRPCR &= ~(DSI_WRPCR_PLL_NDIV | DSI_WRPCR_PLL_IDF | DSI_WRPCR_PLL_ODF);
hdsi->Instance->WRPCR |= (((PLLInit->PLLNDIV) << DSI_WRPCR_PLL_NDIV_Pos) | \
((PLLInit->PLLIDF) << DSI_WRPCR_PLL_IDF_Pos) | \
((PLLInit->PLLODF) << DSI_WRPCR_PLL_ODF_Pos));
/* Enable the DSI PLL */
__HAL_DSI_PLL_ENABLE(hdsi);
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for the lock of the PLL */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/*************************** Set the PHY parameters ***************************/
/* D-PHY clock and digital enable*/
hdsi->Instance->PCTLR |= (DSI_PCTLR_CKE | DSI_PCTLR_DEN);
/* Clock lane configuration */
hdsi->Instance->CLCR &= ~(DSI_CLCR_DPCC | DSI_CLCR_ACR);
hdsi->Instance->CLCR |= (DSI_CLCR_DPCC | hdsi->Init.AutomaticClockLaneControl);
/* Configure the number of active data lanes */
hdsi->Instance->PCONFR &= ~DSI_PCONFR_NL;
hdsi->Instance->PCONFR |= hdsi->Init.NumberOfLanes;
/************************ Set the DSI clock parameters ************************/
/* Set the TX escape clock division factor */
hdsi->Instance->CCR &= ~DSI_CCR_TXECKDIV;
hdsi->Instance->CCR |= hdsi->Init.TXEscapeCkdiv;
/* Calculate the bit period in high-speed mode in unit of 0.25 ns (UIX4) */
/* The equation is : UIX4 = IntegerPart( (1000/F_PHY_Mhz) * 4 ) */
/* Where : F_PHY_Mhz = (NDIV * HSE_Mhz) / (IDF * ODF) */
tempIDF = (PLLInit->PLLIDF > 0U) ? PLLInit->PLLIDF : 1U;
unitIntervalx4 = (4000000U * tempIDF * ((1UL << (0x3U & PLLInit->PLLODF)))) / ((HSE_VALUE / 1000U) * PLLInit->PLLNDIV);
/* Set the bit period in high-speed mode */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_UIX4;
hdsi->Instance->WPCR[0U] |= unitIntervalx4;
/****************************** Error management *****************************/
/* Disable all error interrupts and reset the Error Mask */
hdsi->Instance->IER[0U] = 0U;
hdsi->Instance->IER[1U] = 0U;
hdsi->ErrorMsk = 0U;
/* Initialize the error code */
hdsi->ErrorCode = HAL_DSI_ERROR_NONE;
/* Initialize the DSI state*/
hdsi->State = HAL_DSI_STATE_READY;
return HAL_OK;
}
/**
* @brief De-initializes the DSI peripheral registers to their default reset
* values.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_DeInit(DSI_HandleTypeDef *hdsi)
{
/* Check the DSI handle allocation */
if (hdsi == NULL)
{
return HAL_ERROR;
}
/* Change DSI peripheral state */
hdsi->State = HAL_DSI_STATE_BUSY;
/* Disable the DSI wrapper */
__HAL_DSI_WRAPPER_DISABLE(hdsi);
/* Disable the DSI host */
__HAL_DSI_DISABLE(hdsi);
/* D-PHY clock and digital disable */
hdsi->Instance->PCTLR &= ~(DSI_PCTLR_CKE | DSI_PCTLR_DEN);
/* Turn off the DSI PLL */
__HAL_DSI_PLL_DISABLE(hdsi);
/* Disable the regulator */
__HAL_DSI_REG_DISABLE(hdsi);
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
if (hdsi->MspDeInitCallback == NULL)
{
hdsi->MspDeInitCallback = HAL_DSI_MspDeInit;
}
/* DeInit the low level hardware */
hdsi->MspDeInitCallback(hdsi);
#else
/* DeInit the low level hardware */
HAL_DSI_MspDeInit(hdsi);
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
/* Initialize the error code */
hdsi->ErrorCode = HAL_DSI_ERROR_NONE;
/* Initialize the DSI state*/
hdsi->State = HAL_DSI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Enable the error monitor flags
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ActiveErrors indicates which error interrupts will be enabled.
* This parameter can be any combination of @arg DSI_Error_Data_Type.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigErrorMonitor(DSI_HandleTypeDef *hdsi, uint32_t ActiveErrors)
{
/* Process locked */
__HAL_LOCK(hdsi);
hdsi->Instance->IER[0U] = 0U;
hdsi->Instance->IER[1U] = 0U;
/* Store active errors to the handle */
hdsi->ErrorMsk = ActiveErrors;
if ((ActiveErrors & HAL_DSI_ERROR_ACK) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[0U] |= DSI_ERROR_ACK_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_PHY) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[0U] |= DSI_ERROR_PHY_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_TX) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_TX_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_RX) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_RX_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_ECC) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_ECC_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_CRC) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_CRC_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_PSE) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_PSE_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_EOT) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_EOT_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_OVF) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_OVF_MASK;
}
if ((ActiveErrors & HAL_DSI_ERROR_GEN) != 0U)
{
/* Enable the interrupt generation on selected errors */
hdsi->Instance->IER[1U] |= DSI_ERROR_GEN_MASK;
}
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Initializes the DSI MSP.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval None
*/
__weak void HAL_DSI_MspInit(DSI_HandleTypeDef *hdsi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdsi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_DSI_MspInit could be implemented in the user file
*/
}
/**
* @brief De-initializes the DSI MSP.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval None
*/
__weak void HAL_DSI_MspDeInit(DSI_HandleTypeDef *hdsi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdsi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_DSI_MspDeInit could be implemented in the user file
*/
}
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User DSI Callback
* To be used instead of the weak predefined callback
* @param hdsi dsi handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg HAL_DSI_TEARING_EFFECT_CB_ID Tearing Effect Callback ID
* @arg HAL_DSI_ENDOF_REFRESH_CB_ID End Of Refresh Callback ID
* @arg HAL_DSI_ERROR_CB_ID Error Callback ID
* @arg HAL_DSI_MSPINIT_CB_ID MspInit callback ID
* @arg HAL_DSI_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval status
*/
HAL_StatusTypeDef HAL_DSI_RegisterCallback(DSI_HandleTypeDef *hdsi, HAL_DSI_CallbackIDTypeDef CallbackID,
pDSI_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hdsi);
if (hdsi->State == HAL_DSI_STATE_READY)
{
switch (CallbackID)
{
case HAL_DSI_TEARING_EFFECT_CB_ID :
hdsi->TearingEffectCallback = pCallback;
break;
case HAL_DSI_ENDOF_REFRESH_CB_ID :
hdsi->EndOfRefreshCallback = pCallback;
break;
case HAL_DSI_ERROR_CB_ID :
hdsi->ErrorCallback = pCallback;
break;
case HAL_DSI_MSPINIT_CB_ID :
hdsi->MspInitCallback = pCallback;
break;
case HAL_DSI_MSPDEINIT_CB_ID :
hdsi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hdsi->State == HAL_DSI_STATE_RESET)
{
switch (CallbackID)
{
case HAL_DSI_MSPINIT_CB_ID :
hdsi->MspInitCallback = pCallback;
break;
case HAL_DSI_MSPDEINIT_CB_ID :
hdsi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdsi);
return status;
}
/**
* @brief Unregister a DSI Callback
* DSI callback is redirected to the weak predefined callback
* @param hdsi dsi handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg HAL_DSI_TEARING_EFFECT_CB_ID Tearing Effect Callback ID
* @arg HAL_DSI_ENDOF_REFRESH_CB_ID End Of Refresh Callback ID
* @arg HAL_DSI_ERROR_CB_ID Error Callback ID
* @arg HAL_DSI_MSPINIT_CB_ID MspInit callback ID
* @arg HAL_DSI_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval status
*/
HAL_StatusTypeDef HAL_DSI_UnRegisterCallback(DSI_HandleTypeDef *hdsi, HAL_DSI_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hdsi);
if (hdsi->State == HAL_DSI_STATE_READY)
{
switch (CallbackID)
{
case HAL_DSI_TEARING_EFFECT_CB_ID :
hdsi->TearingEffectCallback = HAL_DSI_TearingEffectCallback; /* Legacy weak TearingEffectCallback */
break;
case HAL_DSI_ENDOF_REFRESH_CB_ID :
hdsi->EndOfRefreshCallback = HAL_DSI_EndOfRefreshCallback; /* Legacy weak EndOfRefreshCallback */
break;
case HAL_DSI_ERROR_CB_ID :
hdsi->ErrorCallback = HAL_DSI_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_DSI_MSPINIT_CB_ID :
hdsi->MspInitCallback = HAL_DSI_MspInit; /* Legacy weak MspInit Callback */
break;
case HAL_DSI_MSPDEINIT_CB_ID :
hdsi->MspDeInitCallback = HAL_DSI_MspDeInit; /* Legacy weak MspDeInit Callback */
break;
default :
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hdsi->State == HAL_DSI_STATE_RESET)
{
switch (CallbackID)
{
case HAL_DSI_MSPINIT_CB_ID :
hdsi->MspInitCallback = HAL_DSI_MspInit; /* Legacy weak MspInit Callback */
break;
case HAL_DSI_MSPDEINIT_CB_ID :
hdsi->MspDeInitCallback = HAL_DSI_MspDeInit; /* Legacy weak MspDeInit Callback */
break;
default :
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hdsi->ErrorCode |= HAL_DSI_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hdsi);
return status;
}
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup DSI_Group2 IO operation functions
* @brief IO operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides function allowing to:
(+) Handle DSI interrupt request
@endverbatim
* @{
*/
/**
* @brief Handles DSI interrupt request.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
void HAL_DSI_IRQHandler(DSI_HandleTypeDef *hdsi)
{
uint32_t ErrorStatus0;
uint32_t ErrorStatus1;
/* Tearing Effect Interrupt management ***************************************/
if (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_TE) != 0U)
{
if (__HAL_DSI_GET_IT_SOURCE(hdsi, DSI_IT_TE) != 0U)
{
/* Clear the Tearing Effect Interrupt Flag */
__HAL_DSI_CLEAR_FLAG(hdsi, DSI_FLAG_TE);
/* Tearing Effect Callback */
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
/*Call registered Tearing Effect callback */
hdsi->TearingEffectCallback(hdsi);
#else
/*Call legacy Tearing Effect callback*/
HAL_DSI_TearingEffectCallback(hdsi);
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
}
}
/* End of Refresh Interrupt management ***************************************/
if (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_ER) != 0U)
{
if (__HAL_DSI_GET_IT_SOURCE(hdsi, DSI_IT_ER) != 0U)
{
/* Clear the End of Refresh Interrupt Flag */
__HAL_DSI_CLEAR_FLAG(hdsi, DSI_FLAG_ER);
/* End of Refresh Callback */
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
/*Call registered End of refresh callback */
hdsi->EndOfRefreshCallback(hdsi);
#else
/*Call Legacy End of refresh callback */
HAL_DSI_EndOfRefreshCallback(hdsi);
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
}
}
/* Error Interrupts management ***********************************************/
if (hdsi->ErrorMsk != 0U)
{
ErrorStatus0 = hdsi->Instance->ISR[0U];
ErrorStatus0 &= hdsi->Instance->IER[0U];
ErrorStatus1 = hdsi->Instance->ISR[1U];
ErrorStatus1 &= hdsi->Instance->IER[1U];
if ((ErrorStatus0 & DSI_ERROR_ACK_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_ACK;
}
if ((ErrorStatus0 & DSI_ERROR_PHY_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_PHY;
}
if ((ErrorStatus1 & DSI_ERROR_TX_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_TX;
}
if ((ErrorStatus1 & DSI_ERROR_RX_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_RX;
}
if ((ErrorStatus1 & DSI_ERROR_ECC_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_ECC;
}
if ((ErrorStatus1 & DSI_ERROR_CRC_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_CRC;
}
if ((ErrorStatus1 & DSI_ERROR_PSE_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_PSE;
}
if ((ErrorStatus1 & DSI_ERROR_EOT_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_EOT;
}
if ((ErrorStatus1 & DSI_ERROR_OVF_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_OVF;
}
if ((ErrorStatus1 & DSI_ERROR_GEN_MASK) != 0U)
{
hdsi->ErrorCode |= HAL_DSI_ERROR_GEN;
}
/* Check only selected errors */
if (hdsi->ErrorCode != HAL_DSI_ERROR_NONE)
{
/* DSI error interrupt callback */
#if (USE_HAL_DSI_REGISTER_CALLBACKS == 1)
/*Call registered Error callback */
hdsi->ErrorCallback(hdsi);
#else
/*Call Legacy Error callback */
HAL_DSI_ErrorCallback(hdsi);
#endif /* USE_HAL_DSI_REGISTER_CALLBACKS */
}
}
}
/**
* @brief Tearing Effect DSI callback.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval None
*/
__weak void HAL_DSI_TearingEffectCallback(DSI_HandleTypeDef *hdsi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdsi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_DSI_TearingEffectCallback could be implemented in the user file
*/
}
/**
* @brief End of Refresh DSI callback.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval None
*/
__weak void HAL_DSI_EndOfRefreshCallback(DSI_HandleTypeDef *hdsi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdsi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_DSI_EndOfRefreshCallback could be implemented in the user file
*/
}
/**
* @brief Operation Error DSI callback.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval None
*/
__weak void HAL_DSI_ErrorCallback(DSI_HandleTypeDef *hdsi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hdsi);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_DSI_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup DSI_Group3 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the Generic interface read-back Virtual Channel ID
(+) Select video mode and configure the corresponding parameters
(+) Configure command transmission mode: High-speed or Low-power
(+) Configure the flow control
(+) Configure the DSI PHY timer
(+) Configure the DSI HOST timeout
(+) Configure the DSI HOST timeout
(+) Start/Stop the DSI module
(+) Refresh the display in command mode
(+) Controls the display color mode in Video mode
(+) Control the display shutdown in Video mode
(+) write short DCS or short Generic command
(+) write long DCS or long Generic command
(+) Read command (DCS or generic)
(+) Enter/Exit the Ultra Low Power Mode on data only (D-PHY PLL running)
(+) Enter/Exit the Ultra Low Power Mode on data only and clock (D-PHY PLL turned off)
(+) Start/Stop test pattern generation
(+) Slew-Rate And Delay Tuning
(+) Low-Power Reception Filter Tuning
(+) Activate an additional current path on all lanes to meet the SDDTx parameter
(+) Custom lane pins configuration
(+) Set custom timing for the PHY
(+) Force the Clock/Data Lane in TX Stop Mode
(+) Force LP Receiver in Low-Power Mode
(+) Force Data Lanes in RX Mode after a BTA
(+) Enable a pull-down on the lanes to prevent from floating states when unused
(+) Switch off the contention detection on data lanes
@endverbatim
* @{
*/
/**
* @brief Configure the Generic interface read-back Virtual Channel ID.
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param VirtualChannelID Virtual channel ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetGenericVCID(DSI_HandleTypeDef *hdsi, uint32_t VirtualChannelID)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Update the GVCID register */
hdsi->Instance->GVCIDR &= ~DSI_GVCIDR_VCID;
hdsi->Instance->GVCIDR |= VirtualChannelID;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Select video mode and configure the corresponding parameters
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param VidCfg pointer to a DSI_VidCfgTypeDef structure that contains
* the DSI video mode configuration parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigVideoMode(DSI_HandleTypeDef *hdsi, DSI_VidCfgTypeDef *VidCfg)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_COLOR_CODING(VidCfg->ColorCoding));
assert_param(IS_DSI_VIDEO_MODE_TYPE(VidCfg->Mode));
assert_param(IS_DSI_LP_COMMAND(VidCfg->LPCommandEnable));
assert_param(IS_DSI_LP_HFP(VidCfg->LPHorizontalFrontPorchEnable));
assert_param(IS_DSI_LP_HBP(VidCfg->LPHorizontalBackPorchEnable));
assert_param(IS_DSI_LP_VACTIVE(VidCfg->LPVerticalActiveEnable));
assert_param(IS_DSI_LP_VFP(VidCfg->LPVerticalFrontPorchEnable));
assert_param(IS_DSI_LP_VBP(VidCfg->LPVerticalBackPorchEnable));
assert_param(IS_DSI_LP_VSYNC(VidCfg->LPVerticalSyncActiveEnable));
assert_param(IS_DSI_FBTAA(VidCfg->FrameBTAAcknowledgeEnable));
assert_param(IS_DSI_DE_POLARITY(VidCfg->DEPolarity));
assert_param(IS_DSI_VSYNC_POLARITY(VidCfg->VSPolarity));
assert_param(IS_DSI_HSYNC_POLARITY(VidCfg->HSPolarity));
/* Check the LooselyPacked variant only in 18-bit mode */
if (VidCfg->ColorCoding == DSI_RGB666)
{
assert_param(IS_DSI_LOOSELY_PACKED(VidCfg->LooselyPacked));
}
/* Select video mode by resetting CMDM and DSIM bits */
hdsi->Instance->MCR &= ~DSI_MCR_CMDM;
hdsi->Instance->WCFGR &= ~DSI_WCFGR_DSIM;
/* Configure the video mode transmission type */
hdsi->Instance->VMCR &= ~DSI_VMCR_VMT;
hdsi->Instance->VMCR |= VidCfg->Mode;
/* Configure the video packet size */
hdsi->Instance->VPCR &= ~DSI_VPCR_VPSIZE;
hdsi->Instance->VPCR |= VidCfg->PacketSize;
/* Set the chunks number to be transmitted through the DSI link */
hdsi->Instance->VCCR &= ~DSI_VCCR_NUMC;
hdsi->Instance->VCCR |= VidCfg->NumberOfChunks;
/* Set the size of the null packet */
hdsi->Instance->VNPCR &= ~DSI_VNPCR_NPSIZE;
hdsi->Instance->VNPCR |= VidCfg->NullPacketSize;
/* Select the virtual channel for the LTDC interface traffic */
hdsi->Instance->LVCIDR &= ~DSI_LVCIDR_VCID;
hdsi->Instance->LVCIDR |= VidCfg->VirtualChannelID;
/* Configure the polarity of control signals */
hdsi->Instance->LPCR &= ~(DSI_LPCR_DEP | DSI_LPCR_VSP | DSI_LPCR_HSP);
hdsi->Instance->LPCR |= (VidCfg->DEPolarity | VidCfg->VSPolarity | VidCfg->HSPolarity);
/* Select the color coding for the host */
hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_COLC;
hdsi->Instance->LCOLCR |= VidCfg->ColorCoding;
/* Select the color coding for the wrapper */
hdsi->Instance->WCFGR &= ~DSI_WCFGR_COLMUX;
hdsi->Instance->WCFGR |= ((VidCfg->ColorCoding) << 1U);
/* Enable/disable the loosely packed variant to 18-bit configuration */
if (VidCfg->ColorCoding == DSI_RGB666)
{
hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_LPE;
hdsi->Instance->LCOLCR |= VidCfg->LooselyPacked;
}
/* Set the Horizontal Synchronization Active (HSA) in lane byte clock cycles */
hdsi->Instance->VHSACR &= ~DSI_VHSACR_HSA;
hdsi->Instance->VHSACR |= VidCfg->HorizontalSyncActive;
/* Set the Horizontal Back Porch (HBP) in lane byte clock cycles */
hdsi->Instance->VHBPCR &= ~DSI_VHBPCR_HBP;
hdsi->Instance->VHBPCR |= VidCfg->HorizontalBackPorch;
/* Set the total line time (HLINE=HSA+HBP+HACT+HFP) in lane byte clock cycles */
hdsi->Instance->VLCR &= ~DSI_VLCR_HLINE;
hdsi->Instance->VLCR |= VidCfg->HorizontalLine;
/* Set the Vertical Synchronization Active (VSA) */
hdsi->Instance->VVSACR &= ~DSI_VVSACR_VSA;
hdsi->Instance->VVSACR |= VidCfg->VerticalSyncActive;
/* Set the Vertical Back Porch (VBP)*/
hdsi->Instance->VVBPCR &= ~DSI_VVBPCR_VBP;
hdsi->Instance->VVBPCR |= VidCfg->VerticalBackPorch;
/* Set the Vertical Front Porch (VFP)*/
hdsi->Instance->VVFPCR &= ~DSI_VVFPCR_VFP;
hdsi->Instance->VVFPCR |= VidCfg->VerticalFrontPorch;
/* Set the Vertical Active period*/
hdsi->Instance->VVACR &= ~DSI_VVACR_VA;
hdsi->Instance->VVACR |= VidCfg->VerticalActive;
/* Configure the command transmission mode */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPCE;
hdsi->Instance->VMCR |= VidCfg->LPCommandEnable;
/* Low power largest packet size */
hdsi->Instance->LPMCR &= ~DSI_LPMCR_LPSIZE;
hdsi->Instance->LPMCR |= ((VidCfg->LPLargestPacketSize) << 16U);
/* Low power VACT largest packet size */
hdsi->Instance->LPMCR &= ~DSI_LPMCR_VLPSIZE;
hdsi->Instance->LPMCR |= VidCfg->LPVACTLargestPacketSize;
/* Enable LP transition in HFP period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPHFPE;
hdsi->Instance->VMCR |= VidCfg->LPHorizontalFrontPorchEnable;
/* Enable LP transition in HBP period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPHBPE;
hdsi->Instance->VMCR |= VidCfg->LPHorizontalBackPorchEnable;
/* Enable LP transition in VACT period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPVAE;
hdsi->Instance->VMCR |= VidCfg->LPVerticalActiveEnable;
/* Enable LP transition in VFP period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPVFPE;
hdsi->Instance->VMCR |= VidCfg->LPVerticalFrontPorchEnable;
/* Enable LP transition in VBP period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPVBPE;
hdsi->Instance->VMCR |= VidCfg->LPVerticalBackPorchEnable;
/* Enable LP transition in vertical sync period */
hdsi->Instance->VMCR &= ~DSI_VMCR_LPVSAE;
hdsi->Instance->VMCR |= VidCfg->LPVerticalSyncActiveEnable;
/* Enable the request for an acknowledge response at the end of a frame */
hdsi->Instance->VMCR &= ~DSI_VMCR_FBTAAE;
hdsi->Instance->VMCR |= VidCfg->FrameBTAAcknowledgeEnable;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Select adapted command mode and configure the corresponding parameters
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param CmdCfg pointer to a DSI_CmdCfgTypeDef structure that contains
* the DSI command mode configuration parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigAdaptedCommandMode(DSI_HandleTypeDef *hdsi, DSI_CmdCfgTypeDef *CmdCfg)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_COLOR_CODING(CmdCfg->ColorCoding));
assert_param(IS_DSI_TE_SOURCE(CmdCfg->TearingEffectSource));
assert_param(IS_DSI_TE_POLARITY(CmdCfg->TearingEffectPolarity));
assert_param(IS_DSI_AUTOMATIC_REFRESH(CmdCfg->AutomaticRefresh));
assert_param(IS_DSI_VS_POLARITY(CmdCfg->VSyncPol));
assert_param(IS_DSI_TE_ACK_REQUEST(CmdCfg->TEAcknowledgeRequest));
assert_param(IS_DSI_DE_POLARITY(CmdCfg->DEPolarity));
assert_param(IS_DSI_VSYNC_POLARITY(CmdCfg->VSPolarity));
assert_param(IS_DSI_HSYNC_POLARITY(CmdCfg->HSPolarity));
/* Select command mode by setting CMDM and DSIM bits */
hdsi->Instance->MCR |= DSI_MCR_CMDM;
hdsi->Instance->WCFGR &= ~DSI_WCFGR_DSIM;
hdsi->Instance->WCFGR |= DSI_WCFGR_DSIM;
/* Select the virtual channel for the LTDC interface traffic */
hdsi->Instance->LVCIDR &= ~DSI_LVCIDR_VCID;
hdsi->Instance->LVCIDR |= CmdCfg->VirtualChannelID;
/* Configure the polarity of control signals */
hdsi->Instance->LPCR &= ~(DSI_LPCR_DEP | DSI_LPCR_VSP | DSI_LPCR_HSP);
hdsi->Instance->LPCR |= (CmdCfg->DEPolarity | CmdCfg->VSPolarity | CmdCfg->HSPolarity);
/* Select the color coding for the host */
hdsi->Instance->LCOLCR &= ~DSI_LCOLCR_COLC;
hdsi->Instance->LCOLCR |= CmdCfg->ColorCoding;
/* Select the color coding for the wrapper */
hdsi->Instance->WCFGR &= ~DSI_WCFGR_COLMUX;
hdsi->Instance->WCFGR |= ((CmdCfg->ColorCoding) << 1U);
/* Configure the maximum allowed size for write memory command */
hdsi->Instance->LCCR &= ~DSI_LCCR_CMDSIZE;
hdsi->Instance->LCCR |= CmdCfg->CommandSize;
/* Configure the tearing effect source and polarity and select the refresh mode */
hdsi->Instance->WCFGR &= ~(DSI_WCFGR_TESRC | DSI_WCFGR_TEPOL | DSI_WCFGR_AR | DSI_WCFGR_VSPOL);
hdsi->Instance->WCFGR |= (CmdCfg->TearingEffectSource | CmdCfg->TearingEffectPolarity | CmdCfg->AutomaticRefresh |
CmdCfg->VSyncPol);
/* Configure the tearing effect acknowledge request */
hdsi->Instance->CMCR &= ~DSI_CMCR_TEARE;
hdsi->Instance->CMCR |= CmdCfg->TEAcknowledgeRequest;
/* Enable the Tearing Effect interrupt */
__HAL_DSI_ENABLE_IT(hdsi, DSI_IT_TE);
/* Enable the End of Refresh interrupt */
__HAL_DSI_ENABLE_IT(hdsi, DSI_IT_ER);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Configure command transmission mode: High-speed or Low-power
* and enable/disable acknowledge request after packet transmission
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param LPCmd pointer to a DSI_LPCmdTypeDef structure that contains
* the DSI command transmission mode configuration parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigCommand(DSI_HandleTypeDef *hdsi, DSI_LPCmdTypeDef *LPCmd)
{
/* Process locked */
__HAL_LOCK(hdsi);
assert_param(IS_DSI_LP_GSW0P(LPCmd->LPGenShortWriteNoP));
assert_param(IS_DSI_LP_GSW1P(LPCmd->LPGenShortWriteOneP));
assert_param(IS_DSI_LP_GSW2P(LPCmd->LPGenShortWriteTwoP));
assert_param(IS_DSI_LP_GSR0P(LPCmd->LPGenShortReadNoP));
assert_param(IS_DSI_LP_GSR1P(LPCmd->LPGenShortReadOneP));
assert_param(IS_DSI_LP_GSR2P(LPCmd->LPGenShortReadTwoP));
assert_param(IS_DSI_LP_GLW(LPCmd->LPGenLongWrite));
assert_param(IS_DSI_LP_DSW0P(LPCmd->LPDcsShortWriteNoP));
assert_param(IS_DSI_LP_DSW1P(LPCmd->LPDcsShortWriteOneP));
assert_param(IS_DSI_LP_DSR0P(LPCmd->LPDcsShortReadNoP));
assert_param(IS_DSI_LP_DLW(LPCmd->LPDcsLongWrite));
assert_param(IS_DSI_LP_MRDP(LPCmd->LPMaxReadPacket));
assert_param(IS_DSI_ACK_REQUEST(LPCmd->AcknowledgeRequest));
/* Select High-speed or Low-power for command transmission */
hdsi->Instance->CMCR &= ~(DSI_CMCR_GSW0TX | \
DSI_CMCR_GSW1TX | \
DSI_CMCR_GSW2TX | \
DSI_CMCR_GSR0TX | \
DSI_CMCR_GSR1TX | \
DSI_CMCR_GSR2TX | \
DSI_CMCR_GLWTX | \
DSI_CMCR_DSW0TX | \
DSI_CMCR_DSW1TX | \
DSI_CMCR_DSR0TX | \
DSI_CMCR_DLWTX | \
DSI_CMCR_MRDPS);
hdsi->Instance->CMCR |= (LPCmd->LPGenShortWriteNoP | \
LPCmd->LPGenShortWriteOneP | \
LPCmd->LPGenShortWriteTwoP | \
LPCmd->LPGenShortReadNoP | \
LPCmd->LPGenShortReadOneP | \
LPCmd->LPGenShortReadTwoP | \
LPCmd->LPGenLongWrite | \
LPCmd->LPDcsShortWriteNoP | \
LPCmd->LPDcsShortWriteOneP | \
LPCmd->LPDcsShortReadNoP | \
LPCmd->LPDcsLongWrite | \
LPCmd->LPMaxReadPacket);
/* Configure the acknowledge request after each packet transmission */
hdsi->Instance->CMCR &= ~DSI_CMCR_ARE;
hdsi->Instance->CMCR |= LPCmd->AcknowledgeRequest;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Configure the flow control parameters
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param FlowControl flow control feature(s) to be enabled.
* This parameter can be any combination of @arg DSI_FlowControl.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigFlowControl(DSI_HandleTypeDef *hdsi, uint32_t FlowControl)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_FLOW_CONTROL(FlowControl));
/* Set the DSI Host Protocol Configuration Register */
hdsi->Instance->PCR &= ~DSI_FLOW_CONTROL_ALL;
hdsi->Instance->PCR |= FlowControl;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Configure the DSI PHY timer parameters
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param PhyTimers DSI_PHY_TimerTypeDef structure that contains
* the DSI PHY timing parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigPhyTimer(DSI_HandleTypeDef *hdsi, DSI_PHY_TimerTypeDef *PhyTimers)
{
uint32_t maxTime;
/* Process locked */
__HAL_LOCK(hdsi);
maxTime = (PhyTimers->ClockLaneLP2HSTime > PhyTimers->ClockLaneHS2LPTime) ? PhyTimers->ClockLaneLP2HSTime :
PhyTimers->ClockLaneHS2LPTime;
/* Clock lane timer configuration */
/* In Automatic Clock Lane control mode, the DSI Host can turn off the clock lane between two
High-Speed transmission.
To do so, the DSI Host calculates the time required for the clock lane to change from HighSpeed
to Low-Power and from Low-Power to High-Speed.
This timings are configured by the HS2LP_TIME and LP2HS_TIME in the DSI Host Clock Lane Timer Configuration
Register (DSI_CLTCR).
But the DSI Host is not calculating LP2HS_TIME + HS2LP_TIME but 2 x HS2LP_TIME.
Workaround : Configure HS2LP_TIME and LP2HS_TIME with the same value being the max of HS2LP_TIME or LP2HS_TIME.
*/
hdsi->Instance->CLTCR &= ~(DSI_CLTCR_LP2HS_TIME | DSI_CLTCR_HS2LP_TIME);
hdsi->Instance->CLTCR |= (maxTime | ((maxTime) << 16U));
/* Data lane timer configuration */
hdsi->Instance->DLTCR &= ~(DSI_DLTCR_MRD_TIME | DSI_DLTCR_LP2HS_TIME | DSI_DLTCR_HS2LP_TIME);
hdsi->Instance->DLTCR |= (PhyTimers->DataLaneMaxReadTime | ((PhyTimers->DataLaneLP2HSTime) << 16U) | ((
PhyTimers->DataLaneHS2LPTime) << 24U));
/* Configure the wait period to request HS transmission after a stop state */
hdsi->Instance->PCONFR &= ~DSI_PCONFR_SW_TIME;
hdsi->Instance->PCONFR |= ((PhyTimers->StopWaitTime) << 8U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Configure the DSI HOST timeout parameters
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param HostTimeouts DSI_HOST_TimeoutTypeDef structure that contains
* the DSI host timeout parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ConfigHostTimeouts(DSI_HandleTypeDef *hdsi, DSI_HOST_TimeoutTypeDef *HostTimeouts)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Set the timeout clock division factor */
hdsi->Instance->CCR &= ~DSI_CCR_TOCKDIV;
hdsi->Instance->CCR |= ((HostTimeouts->TimeoutCkdiv) << 8U);
/* High-speed transmission timeout */
hdsi->Instance->TCCR[0U] &= ~DSI_TCCR0_HSTX_TOCNT;
hdsi->Instance->TCCR[0U] |= ((HostTimeouts->HighSpeedTransmissionTimeout) << 16U);
/* Low-power reception timeout */
hdsi->Instance->TCCR[0U] &= ~DSI_TCCR0_LPRX_TOCNT;
hdsi->Instance->TCCR[0U] |= HostTimeouts->LowPowerReceptionTimeout;
/* High-speed read timeout */
hdsi->Instance->TCCR[1U] &= ~DSI_TCCR1_HSRD_TOCNT;
hdsi->Instance->TCCR[1U] |= HostTimeouts->HighSpeedReadTimeout;
/* Low-power read timeout */
hdsi->Instance->TCCR[2U] &= ~DSI_TCCR2_LPRD_TOCNT;
hdsi->Instance->TCCR[2U] |= HostTimeouts->LowPowerReadTimeout;
/* High-speed write timeout */
hdsi->Instance->TCCR[3U] &= ~DSI_TCCR3_HSWR_TOCNT;
hdsi->Instance->TCCR[3U] |= HostTimeouts->HighSpeedWriteTimeout;
/* High-speed write presp mode */
hdsi->Instance->TCCR[3U] &= ~DSI_TCCR3_PM;
hdsi->Instance->TCCR[3U] |= HostTimeouts->HighSpeedWritePrespMode;
/* Low-speed write timeout */
hdsi->Instance->TCCR[4U] &= ~DSI_TCCR4_LPWR_TOCNT;
hdsi->Instance->TCCR[4U] |= HostTimeouts->LowPowerWriteTimeout;
/* BTA timeout */
hdsi->Instance->TCCR[5U] &= ~DSI_TCCR5_BTA_TOCNT;
hdsi->Instance->TCCR[5U] |= HostTimeouts->BTATimeout;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Start the DSI module
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Start(DSI_HandleTypeDef *hdsi)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Enable the DSI host */
__HAL_DSI_ENABLE(hdsi);
/* Enable the DSI wrapper */
__HAL_DSI_WRAPPER_ENABLE(hdsi);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Stop the DSI module
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Stop(DSI_HandleTypeDef *hdsi)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Disable the DSI host */
__HAL_DSI_DISABLE(hdsi);
/* Disable the DSI wrapper */
__HAL_DSI_WRAPPER_DISABLE(hdsi);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Refresh the display in command mode
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Refresh(DSI_HandleTypeDef *hdsi)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Update the display */
hdsi->Instance->WCR |= DSI_WCR_LTDCEN;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Controls the display color mode in Video mode
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ColorMode Color mode (full or 8-colors).
* This parameter can be any value of @arg DSI_Color_Mode
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ColorMode(DSI_HandleTypeDef *hdsi, uint32_t ColorMode)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_COLOR_MODE(ColorMode));
/* Update the display color mode */
hdsi->Instance->WCR &= ~DSI_WCR_COLM;
hdsi->Instance->WCR |= ColorMode;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Control the display shutdown in Video mode
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param Shutdown Shut-down (Display-ON or Display-OFF).
* This parameter can be any value of @arg DSI_ShutDown
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Shutdown(DSI_HandleTypeDef *hdsi, uint32_t Shutdown)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_SHUT_DOWN(Shutdown));
/* Update the display Shutdown */
hdsi->Instance->WCR &= ~DSI_WCR_SHTDN;
hdsi->Instance->WCR |= Shutdown;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief write short DCS or short Generic command
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ChannelID Virtual channel ID.
* @param Mode DSI short packet data type.
* This parameter can be any value of @arg DSI_SHORT_WRITE_PKT_Data_Type.
* @param Param1 DSC command or first generic parameter.
* This parameter can be any value of @arg DSI_DCS_Command or a
* generic command code.
* @param Param2 DSC parameter or second generic parameter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ShortWrite(DSI_HandleTypeDef *hdsi,
uint32_t ChannelID,
uint32_t Mode,
uint32_t Param1,
uint32_t Param2)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_DSI_SHORT_WRITE_PACKET_TYPE(Mode));
/* Process locked */
__HAL_LOCK(hdsi);
status = DSI_ShortWrite(hdsi, ChannelID, Mode, Param1, Param2);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return status;
}
/**
* @brief write long DCS or long Generic command
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ChannelID Virtual channel ID.
* @param Mode DSI long packet data type.
* This parameter can be any value of @arg DSI_LONG_WRITE_PKT_Data_Type.
* @param NbParams Number of parameters.
* @param Param1 DSC command or first generic parameter.
* This parameter can be any value of @arg DSI_DCS_Command or a
* generic command code
* @param ParametersTable Pointer to parameter values table.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_LongWrite(DSI_HandleTypeDef *hdsi,
uint32_t ChannelID,
uint32_t Mode,
uint32_t NbParams,
uint32_t Param1,
uint8_t *ParametersTable)
{
uint32_t uicounter;
uint32_t nbBytes;
uint32_t count;
uint32_t tickstart;
uint32_t fifoword;
uint8_t *pparams = ParametersTable;
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_LONG_WRITE_PACKET_TYPE(Mode));
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for Command FIFO Empty */
while ((hdsi->Instance->GPSR & DSI_GPSR_CMDFE) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Set the DCS code on payload byte 1, and the other parameters on the write FIFO command*/
fifoword = Param1;
nbBytes = (NbParams < 3U) ? NbParams : 3U;
for (count = 0U; count < nbBytes; count++)
{
fifoword |= (((uint32_t)(*(pparams + count))) << (8U + (8U * count)));
}
hdsi->Instance->GPDR = fifoword;
uicounter = NbParams - nbBytes;
pparams += nbBytes;
/* Set the Next parameters on the write FIFO command*/
while (uicounter != 0U)
{
nbBytes = (uicounter < 4U) ? uicounter : 4U;
fifoword = 0U;
for (count = 0U; count < nbBytes; count++)
{
fifoword |= (((uint32_t)(*(pparams + count))) << (8U * count));
}
hdsi->Instance->GPDR = fifoword;
uicounter -= nbBytes;
pparams += nbBytes;
}
/* Configure the packet to send a long DCS command */
DSI_ConfigPacketHeader(hdsi->Instance,
ChannelID,
Mode,
((NbParams + 1U) & 0x00FFU),
(((NbParams + 1U) & 0xFF00U) >> 8U));
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Read command (DCS or generic)
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param ChannelNbr Virtual channel ID
* @param Array pointer to a buffer to store the payload of a read back operation.
* @param Size Data size to be read (in byte).
* @param Mode DSI read packet data type.
* This parameter can be any value of @arg DSI_SHORT_READ_PKT_Data_Type.
* @param DCSCmd DCS get/read command.
* @param ParametersTable Pointer to parameter values table.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_Read(DSI_HandleTypeDef *hdsi,
uint32_t ChannelNbr,
uint8_t *Array,
uint32_t Size,
uint32_t Mode,
uint32_t DCSCmd,
uint8_t *ParametersTable)
{
uint32_t tickstart;
uint8_t *pdata = Array;
uint32_t datasize = Size;
uint32_t fifoword;
uint32_t nbbytes;
uint32_t count;
/* Process locked */
__HAL_LOCK(hdsi);
/* Check the parameters */
assert_param(IS_DSI_READ_PACKET_TYPE(Mode));
if (datasize > 2U)
{
/* set max return packet size */
if (DSI_ShortWrite(hdsi, ChannelNbr, DSI_MAX_RETURN_PKT_SIZE, ((datasize) & 0xFFU),
(((datasize) >> 8U) & 0xFFU)) != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
/* Configure the packet to read command */
if (Mode == DSI_DCS_SHORT_PKT_READ)
{
DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, DCSCmd, 0U);
}
else if (Mode == DSI_GEN_SHORT_PKT_READ_P0)
{
DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, 0U, 0U);
}
else if (Mode == DSI_GEN_SHORT_PKT_READ_P1)
{
DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, ParametersTable[0U], 0U);
}
else if (Mode == DSI_GEN_SHORT_PKT_READ_P2)
{
DSI_ConfigPacketHeader(hdsi->Instance, ChannelNbr, Mode, ParametersTable[0U], ParametersTable[1U]);
}
else
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Get tick */
tickstart = HAL_GetTick();
/* If DSI fifo is not empty, read requested bytes */
while (((int32_t)(datasize)) > 0)
{
if ((hdsi->Instance->GPSR & DSI_GPSR_PRDFE) == 0U)
{
fifoword = hdsi->Instance->GPDR;
nbbytes = (datasize < 4U) ? datasize : 4U;
for (count = 0U; count < nbbytes; count++)
{
*pdata = (uint8_t)(fifoword >> (8U * count));
pdata++;
datasize--;
}
}
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
/* Software workaround to avoid HAL_TIMEOUT when a DSI read command is */
/* issued to the panel and the read data is not captured by the DSI Host */
/* which returns Packet Size Error. */
/* Need to ensure that the Read command has finished before checking PSE */
if ((hdsi->Instance->GPSR & DSI_GPSR_RCB) == 0U)
{
if ((hdsi->Instance->ISR[1U] & DSI_ISR1_PSE) == DSI_ISR1_PSE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Enter the ULPM (Ultra Low Power Mode) with the D-PHY PLL running
* (only data lanes are in ULPM)
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_EnterULPMData(DSI_HandleTypeDef *hdsi)
{
uint32_t tickstart;
/* Process locked */
__HAL_LOCK(hdsi);
/* Verify the initial status of the DSI Host */
/* Verify that the clock lane and the digital section of the D-PHY are enabled */
if ((hdsi->Instance->PCTLR & (DSI_PCTLR_CKE | DSI_PCTLR_DEN)) != (DSI_PCTLR_CKE | DSI_PCTLR_DEN))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that the D-PHY PLL and the reference bias are enabled */
if ((hdsi->Instance->WRPCR & DSI_WRPCR_PLLEN) != DSI_WRPCR_PLLEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
else if ((hdsi->Instance->WRPCR & DSI_WRPCR_REGEN) != DSI_WRPCR_REGEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
/* Verify that there are no ULPS exit or request on data lanes */
if ((hdsi->Instance->PUCR & (DSI_PUCR_UEDL | DSI_PUCR_URDL)) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that there are no Transmission trigger */
if ((hdsi->Instance->PTTCR & DSI_PTTCR_TX_TRIG) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Verify that D-PHY PLL is locked */
tickstart = HAL_GetTick();
while ((__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U))
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Verify that all active lanes are in Stop state */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & DSI_PSR_UAN0) != DSI_PSR_UAN0)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* ULPS Request on Data Lanes */
hdsi->Instance->PUCR |= DSI_PUCR_URDL;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until the D-PHY active lanes enter into ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
while ((hdsi->Instance->PSR & DSI_PSR_UAN0) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Exit the ULPM (Ultra Low Power Mode) with the D-PHY PLL running
* (only data lanes are in ULPM)
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ExitULPMData(DSI_HandleTypeDef *hdsi)
{
uint32_t tickstart;
/* Process locked */
__HAL_LOCK(hdsi);
/* Verify that all active lanes are in ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & DSI_PSR_UAN0) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Turn on the DSI PLL */
__HAL_DSI_PLL_ENABLE(hdsi);
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for the lock of the PLL */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Exit ULPS on Data Lanes */
hdsi->Instance->PUCR |= DSI_PUCR_UEDL;
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until all active lanes exit ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
while ((hdsi->Instance->PSR & DSI_PSR_UAN0) != DSI_PSR_UAN0)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1))
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* wait for 1 ms*/
HAL_Delay(1U);
/* De-assert the ULPM requests and the ULPM exit bits */
hdsi->Instance->PUCR = 0U;
/* Verify that D-PHY PLL is enabled */
if ((hdsi->Instance->WRPCR & DSI_WRPCR_PLLEN) != DSI_WRPCR_PLLEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that all active lanes are in Stop state */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & DSI_PSR_UAN0) != DSI_PSR_UAN0)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that D-PHY PLL is locked */
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for the lock of the PLL */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Enter the ULPM (Ultra Low Power Mode) with the D-PHY PLL turned off
* (both data and clock lanes are in ULPM)
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_EnterULPM(DSI_HandleTypeDef *hdsi)
{
uint32_t tickstart;
/* Process locked */
__HAL_LOCK(hdsi);
/* Verify the initial status of the DSI Host */
/* Verify that the clock lane and the digital section of the D-PHY are enabled */
if ((hdsi->Instance->PCTLR & (DSI_PCTLR_CKE | DSI_PCTLR_DEN)) != (DSI_PCTLR_CKE | DSI_PCTLR_DEN))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that the D-PHY PLL and the reference bias are enabled */
if ((hdsi->Instance->WRPCR & DSI_WRPCR_PLLEN) != DSI_WRPCR_PLLEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
else if ((hdsi->Instance->WRPCR & DSI_WRPCR_REGEN) != DSI_WRPCR_REGEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
else
{
/* Nothing to do */
}
/* Verify that there are no ULPS exit or request on both data and clock lanes */
if ((hdsi->Instance->PUCR & (DSI_PUCR_UEDL | DSI_PUCR_URDL | DSI_PUCR_UECL | DSI_PUCR_URCL)) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that there are no Transmission trigger */
if ((hdsi->Instance->PTTCR & DSI_PTTCR_TX_TRIG) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Verify that D-PHY PLL is locked */
tickstart = HAL_GetTick();
while ((__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U))
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Verify that all active lanes are in Stop state */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_PSS0)) != (DSI_PSR_UAN0 | DSI_PSR_PSS0))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_PSS0 | DSI_PSR_PSS1 | \
DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_PSS0 | DSI_PSR_PSS1 | DSI_PSR_UAN1))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Clock lane configuration: no more HS request */
hdsi->Instance->CLCR &= ~DSI_CLCR_DPCC;
/* Use system PLL as byte lane clock source before stopping DSIPHY clock source */
__HAL_RCC_DSI_CONFIG(RCC_DSICLKSOURCE_PLLR);
/* ULPS Request on Clock and Data Lanes */
hdsi->Instance->PUCR |= (DSI_PUCR_URCL | DSI_PUCR_URDL);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until all active lanes enter ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UANC)) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1 | DSI_PSR_UANC)) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Turn off the DSI PLL */
__HAL_DSI_PLL_DISABLE(hdsi);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Exit the ULPM (Ultra Low Power Mode) with the D-PHY PLL turned off
* (both data and clock lanes are in ULPM)
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ExitULPM(DSI_HandleTypeDef *hdsi)
{
uint32_t tickstart;
/* Process locked */
__HAL_LOCK(hdsi);
/* Verify that all active lanes are in ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & (DSI_PSR_RUE0 | DSI_PSR_UAN0 | DSI_PSR_PSS0 | \
DSI_PSR_UANC | DSI_PSR_PSSC | DSI_PSR_PD)) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_RUE0 | DSI_PSR_UAN0 | DSI_PSR_PSS0 | DSI_PSR_UAN1 | \
DSI_PSR_PSS1 | DSI_PSR_UANC | DSI_PSR_PSSC | DSI_PSR_PD)) != 0U)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Turn on the DSI PLL */
__HAL_DSI_PLL_ENABLE(hdsi);
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for the lock of the PLL */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Exit ULPS on Clock and Data Lanes */
hdsi->Instance->PUCR |= (DSI_PUCR_UECL | DSI_PUCR_UEDL);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until all active lanes exit ULPM */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UANC)) != (DSI_PSR_UAN0 | DSI_PSR_UANC))
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
while ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_UAN1 | DSI_PSR_UANC)) != (DSI_PSR_UAN0 | DSI_PSR_UAN1 |
DSI_PSR_UANC))
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* wait for 1 ms */
HAL_Delay(1U);
/* De-assert the ULPM requests and the ULPM exit bits */
hdsi->Instance->PUCR = 0U;
/* Switch the lane byte clock source in the RCC from system PLL to D-PHY */
__HAL_RCC_DSI_CONFIG(RCC_DSICLKSOURCE_DSIPHY);
/* Restore clock lane configuration to HS */
hdsi->Instance->CLCR |= DSI_CLCR_DPCC;
/* Verify that D-PHY PLL is enabled */
if ((hdsi->Instance->WRPCR & DSI_WRPCR_PLLEN) != DSI_WRPCR_PLLEN)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that all active lanes are in Stop state */
if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_ONE_DATA_LANE)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_PSS0)) != (DSI_PSR_UAN0 | DSI_PSR_PSS0))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else if ((hdsi->Instance->PCONFR & DSI_PCONFR_NL) == DSI_TWO_DATA_LANES)
{
if ((hdsi->Instance->PSR & (DSI_PSR_UAN0 | DSI_PSR_PSS0 | DSI_PSR_PSS1 | \
DSI_PSR_UAN1)) != (DSI_PSR_UAN0 | DSI_PSR_PSS0 | DSI_PSR_PSS1 | DSI_PSR_UAN1))
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Verify that D-PHY PLL is locked */
/* Requires min of 400us delay before reading the PLLLS flag */
/* 1ms delay is inserted that is the minimum HAL delay granularity */
HAL_Delay(1);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait for the lock of the PLL */
while (__HAL_DSI_GET_FLAG(hdsi, DSI_FLAG_PLLLS) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > DSI_TIMEOUT_VALUE)
{
/* Process Unlocked */
__HAL_UNLOCK(hdsi);
return HAL_TIMEOUT;
}
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Start test pattern generation
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param Mode Pattern generator mode
* This parameter can be one of the following values:
* 0 : Color bars (horizontal or vertical)
* 1 : BER pattern (vertical only)
* @param Orientation Pattern generator orientation
* This parameter can be one of the following values:
* 0 : Vertical color bars
* 1 : Horizontal color bars
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_PatternGeneratorStart(DSI_HandleTypeDef *hdsi, uint32_t Mode, uint32_t Orientation)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Configure pattern generator mode and orientation */
hdsi->Instance->VMCR &= ~(DSI_VMCR_PGM | DSI_VMCR_PGO);
hdsi->Instance->VMCR |= ((Mode << 20U) | (Orientation << 24U));
/* Enable pattern generator by setting PGE bit */
hdsi->Instance->VMCR |= DSI_VMCR_PGE;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Stop test pattern generation
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_PatternGeneratorStop(DSI_HandleTypeDef *hdsi)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Disable pattern generator by clearing PGE bit */
hdsi->Instance->VMCR &= ~DSI_VMCR_PGE;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Set Slew-Rate And Delay Tuning
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param CommDelay Communication delay to be adjusted.
* This parameter can be any value of @arg DSI_Communication_Delay
* @param Lane select between clock or data lanes.
* This parameter can be any value of @arg DSI_Lane_Group
* @param Value Custom value of the slew-rate or delay
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetSlewRateAndDelayTuning(DSI_HandleTypeDef *hdsi, uint32_t CommDelay, uint32_t Lane,
uint32_t Value)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_DSI_COMMUNICATION_DELAY(CommDelay));
assert_param(IS_DSI_LANE_GROUP(Lane));
switch (CommDelay)
{
case DSI_SLEW_RATE_HSTX:
if (Lane == DSI_CLOCK_LANE)
{
/* High-Speed Transmission Slew Rate Control on Clock Lane */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_HSTXSRCCL;
hdsi->Instance->WPCR[1U] |= Value << 16U;
}
else if (Lane == DSI_DATA_LANES)
{
/* High-Speed Transmission Slew Rate Control on Data Lanes */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_HSTXSRCDL;
hdsi->Instance->WPCR[1U] |= Value << 18U;
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
break;
case DSI_SLEW_RATE_LPTX:
if (Lane == DSI_CLOCK_LANE)
{
/* Low-Power transmission Slew Rate Compensation on Clock Lane */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_LPSRCCL;
hdsi->Instance->WPCR[1U] |= Value << 6U;
}
else if (Lane == DSI_DATA_LANES)
{
/* Low-Power transmission Slew Rate Compensation on Data Lanes */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_LPSRCDL;
hdsi->Instance->WPCR[1U] |= Value << 8U;
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
break;
case DSI_HS_DELAY:
if (Lane == DSI_CLOCK_LANE)
{
/* High-Speed Transmission Delay on Clock Lane */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_HSTXDCL;
hdsi->Instance->WPCR[1U] |= Value;
}
else if (Lane == DSI_DATA_LANES)
{
/* High-Speed Transmission Delay on Data Lanes */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_HSTXDDL;
hdsi->Instance->WPCR[1U] |= Value << 2U;
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
break;
default:
break;
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Low-Power Reception Filter Tuning
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param Frequency cutoff frequency of low-pass filter at the input of LPRX
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetLowPowerRXFilter(DSI_HandleTypeDef *hdsi, uint32_t Frequency)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Low-Power RX low-pass Filtering Tuning */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_LPRXFT;
hdsi->Instance->WPCR[1U] |= Frequency << 25U;
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Activate an additional current path on all lanes to meet the SDDTx parameter
* defined in the MIPI D-PHY specification
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetSDD(DSI_HandleTypeDef *hdsi, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(State));
/* Activate/Disactivate additional current path on all lanes */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_SDDC;
hdsi->Instance->WPCR[1U] |= ((uint32_t)State << 12U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Custom lane pins configuration
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param CustomLane Function to be applied on selected lane.
* This parameter can be any value of @arg DSI_CustomLane
* @param Lane select between clock or data lane 0 or data lane 1.
* This parameter can be any value of @arg DSI_Lane_Select
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetLanePinsConfiguration(DSI_HandleTypeDef *hdsi, uint32_t CustomLane, uint32_t Lane,
FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_DSI_CUSTOM_LANE(CustomLane));
assert_param(IS_DSI_LANE(Lane));
assert_param(IS_FUNCTIONAL_STATE(State));
switch (CustomLane)
{
case DSI_SWAP_LANE_PINS:
if (Lane == DSI_CLK_LANE)
{
/* Swap pins on clock lane */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_SWCL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 6U);
}
else if (Lane == DSI_DATA_LANE0)
{
/* Swap pins on data lane 0 */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_SWDL0;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 7U);
}
else if (Lane == DSI_DATA_LANE1)
{
/* Swap pins on data lane 1 */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_SWDL1;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 8U);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
break;
case DSI_INVERT_HS_SIGNAL:
if (Lane == DSI_CLK_LANE)
{
/* Invert HS signal on clock lane */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_HSICL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 9U);
}
else if (Lane == DSI_DATA_LANE0)
{
/* Invert HS signal on data lane 0 */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_HSIDL0;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 10U);
}
else if (Lane == DSI_DATA_LANE1)
{
/* Invert HS signal on data lane 1 */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_HSIDL1;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 11U);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
break;
default:
break;
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Set custom timing for the PHY
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param Timing PHY timing to be adjusted.
* This parameter can be any value of @arg DSI_PHY_Timing
* @param State ENABLE or DISABLE
* @param Value Custom value of the timing
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetPHYTimings(DSI_HandleTypeDef *hdsi, uint32_t Timing, FunctionalState State, uint32_t Value)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_DSI_PHY_TIMING(Timing));
assert_param(IS_FUNCTIONAL_STATE(State));
switch (Timing)
{
case DSI_TCLK_POST:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TCLKPOSTEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 27U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[4U] &= ~DSI_WPCR4_TCLKPOST;
hdsi->Instance->WPCR[4U] |= Value & DSI_WPCR4_TCLKPOST;
}
break;
case DSI_TLPX_CLK:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TLPXCEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 26U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[3U] &= ~DSI_WPCR3_TLPXC;
hdsi->Instance->WPCR[3U] |= (Value << 24U) & DSI_WPCR3_TLPXC;
}
break;
case DSI_THS_EXIT:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_THSEXITEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 25U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[3U] &= ~DSI_WPCR3_THSEXIT;
hdsi->Instance->WPCR[3U] |= (Value << 16U) & DSI_WPCR3_THSEXIT;
}
break;
case DSI_TLPX_DATA:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TLPXDEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 24U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[3U] &= ~DSI_WPCR3_TLPXD;
hdsi->Instance->WPCR[3U] |= (Value << 8U) & DSI_WPCR3_TLPXD;
}
break;
case DSI_THS_ZERO:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_THSZEROEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 23U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[3U] &= ~DSI_WPCR3_THSZERO;
hdsi->Instance->WPCR[3U] |= Value & DSI_WPCR3_THSZERO;
}
break;
case DSI_THS_TRAIL:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_THSTRAILEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 22U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[2U] &= ~DSI_WPCR2_THSTRAIL;
hdsi->Instance->WPCR[2U] |= (Value << 24U) & DSI_WPCR2_THSTRAIL;
}
break;
case DSI_THS_PREPARE:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_THSPREPEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 21U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[2U] &= ~DSI_WPCR2_THSPREP;
hdsi->Instance->WPCR[2U] |= (Value << 16U) & DSI_WPCR2_THSPREP;
}
break;
case DSI_TCLK_ZERO:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TCLKZEROEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 20U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[2U] &= ~DSI_WPCR2_TCLKZERO;
hdsi->Instance->WPCR[2U] |= (Value << 8U) & DSI_WPCR2_TCLKZERO;
}
break;
case DSI_TCLK_PREPARE:
/* Enable/Disable custom timing setting */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TCLKPREPEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 19U);
if (State != DISABLE)
{
/* Set custom value */
hdsi->Instance->WPCR[2U] &= ~DSI_WPCR2_TCLKPREP;
hdsi->Instance->WPCR[2U] |= Value & DSI_WPCR2_TCLKPREP;
}
break;
default:
break;
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Force the Clock/Data Lane in TX Stop Mode
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param Lane select between clock or data lanes.
* This parameter can be any value of @arg DSI_Lane_Group
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ForceTXStopMode(DSI_HandleTypeDef *hdsi, uint32_t Lane, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_DSI_LANE_GROUP(Lane));
assert_param(IS_FUNCTIONAL_STATE(State));
if (Lane == DSI_CLOCK_LANE)
{
/* Force/Unforce the Clock Lane in TX Stop Mode */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_FTXSMCL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 12U);
}
else if (Lane == DSI_DATA_LANES)
{
/* Force/Unforce the Data Lanes in TX Stop Mode */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_FTXSMDL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 13U);
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Force LP Receiver in Low-Power Mode
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ForceRXLowPower(DSI_HandleTypeDef *hdsi, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(State));
/* Force/Unforce LP Receiver in Low-Power Mode */
hdsi->Instance->WPCR[1U] &= ~DSI_WPCR1_FLPRXLPM;
hdsi->Instance->WPCR[1U] |= ((uint32_t)State << 22U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Force Data Lanes in RX Mode after a BTA
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_ForceDataLanesInRX(DSI_HandleTypeDef *hdsi, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(State));
/* Force Data Lanes in RX Mode */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_TDDL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 16U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Enable a pull-down on the lanes to prevent from floating states when unused
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetPullDown(DSI_HandleTypeDef *hdsi, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(State));
/* Enable/Disable pull-down on lanes */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_PDEN;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 18U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @brief Switch off the contention detection on data lanes
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @param State ENABLE or DISABLE
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DSI_SetContentionDetectionOff(DSI_HandleTypeDef *hdsi, FunctionalState State)
{
/* Process locked */
__HAL_LOCK(hdsi);
/* Check function parameters */
assert_param(IS_FUNCTIONAL_STATE(State));
/* Contention Detection on Data Lanes OFF */
hdsi->Instance->WPCR[0U] &= ~DSI_WPCR0_CDOFFDL;
hdsi->Instance->WPCR[0U] |= ((uint32_t)State << 14U);
/* Process unlocked */
__HAL_UNLOCK(hdsi);
return HAL_OK;
}
/**
* @}
*/
/** @defgroup DSI_Group4 Peripheral State and Errors functions
* @brief Peripheral State and Errors functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Check the DSI state.
(+) Get error code.
@endverbatim
* @{
*/
/**
* @brief Return the DSI state
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval HAL state
*/
HAL_DSI_StateTypeDef HAL_DSI_GetState(DSI_HandleTypeDef *hdsi)
{
return hdsi->State;
}
/**
* @brief Return the DSI error code
* @param hdsi pointer to a DSI_HandleTypeDef structure that contains
* the configuration information for the DSI.
* @retval DSI Error Code
*/
uint32_t HAL_DSI_GetError(DSI_HandleTypeDef *hdsi)
{
/* Get the error code */
return hdsi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* DSI */
#endif /* HAL_DSI_MODULE_ENABLED */
/**
* @}
*/