stm32f407-openocd/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s16.c

157 lines
6.1 KiB
C

/*
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_convolve_s16.c
* Description: s16 version of convolution using symmetric quantization.
*
* $Date: January 13, 2022
* $Revision: V.1.1.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/*
* Basic s16 convolution function.
*
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
* are multiples of 4 or atleast greater than 4.
*
*/
arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
const cmsis_nn_conv_params *conv_params,
const cmsis_nn_per_channel_quant_params *quant_params,
const cmsis_nn_dims *input_dims,
const q15_t *input_data,
const cmsis_nn_dims *filter_dims,
const q7_t *filter_data,
const cmsis_nn_dims *bias_dims,
const int64_t *bias_data,
const cmsis_nn_dims *output_dims,
q15_t *output_data)
{
(void)bias_dims;
(void)ctx;
const int32_t input_batches = input_dims->n;
const int32_t input_x = input_dims->w;
const int32_t input_y = input_dims->h;
const int32_t input_ch = input_dims->c;
const int32_t kernel_x = filter_dims->w;
const int32_t kernel_y = filter_dims->h;
const int32_t output_x = output_dims->w;
const int32_t output_y = output_dims->h;
const int32_t output_ch = output_dims->c;
const int32_t pad_x = conv_params->padding.w;
const int32_t pad_y = conv_params->padding.h;
const int32_t stride_x = conv_params->stride.w;
const int32_t stride_y = conv_params->stride.h;
const int32_t dilation_x = conv_params->dilation.w;
const int32_t dilation_y = conv_params->dilation.h;
const int32_t out_activation_min = conv_params->activation.min;
const int32_t out_activation_max = conv_params->activation.max;
int32_t *output_mult = quant_params->multiplier;
int32_t *output_shift = quant_params->shift;
for (int i_batch = 0; i_batch < input_batches; i_batch++)
{
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
for (int32_t i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
{
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i_out_ch]);
for (int32_t base_idx_y = -pad_y, i_out_y = 0; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
{
for (int32_t base_idx_x = -pad_x, i_out_x = 0; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
{
int64_t conv_out_acc = 0;
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
const int32_t ker_y_start = MAX(0, start_y_max);
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
const int32_t ker_x_start = MAX(0, start_x_max);
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
const int32_t ker_y_end = MIN(kernel_y, end_min_y);
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
const int32_t ker_x_end = MIN(kernel_x, end_min_x);
for (int32_t i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
{
for (int32_t i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
{
const int32_t in_row = base_idx_y + dilation_y * i_ker_y;
const int32_t in_col = base_idx_x + dilation_x * i_ker_x;
for (int32_t i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
{
conv_out_acc += input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] *
filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
(i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
}
}
}
if (bias_data)
{
conv_out_acc += bias_data[i_out_ch];
}
int32_t conv_out = arm_nn_requantize_s64(conv_out_acc, reduced_multiplier, output_shift[i_out_ch]);
conv_out = MAX(conv_out, out_activation_min);
conv_out = MIN(conv_out, out_activation_max);
output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int16_t)conv_out;
}
}
}
/* Advance to the next batch */
input_data += (input_x * input_y * input_ch);
output_data += (output_x * output_y * output_ch);
}
/* Return to application */
return ARM_MATH_SUCCESS;
}
int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
(void)input_dims;
(void)filter_dims;
return 0;
}
/**
* @} end of NNConv group
*/