226 lines
5.7 KiB
C
226 lines
5.7 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_rotation2quaternion_f32.c
|
|
* Description: Floating-point rotation to quaternion conversion
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/quaternion_math_functions.h"
|
|
#include <math.h>
|
|
|
|
#define RI(x,y) r[(3*(x) + (y))]
|
|
|
|
|
|
/**
|
|
@ingroup QuatConv
|
|
*/
|
|
|
|
/**
|
|
@defgroup RotQuat Rotation to Quaternion
|
|
|
|
Conversions from rotation to quaternion.
|
|
*/
|
|
|
|
/**
|
|
@addtogroup RotQuat
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
* @brief Conversion of a rotation matrix to an equivalent quaternion.
|
|
* @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
|
|
* @param[out] pOutputQuaternions points to an array quaternions
|
|
* @param[in] nbQuaternions number of quaternions in the array
|
|
* @return none.
|
|
*
|
|
* q and -q are representing the same rotation. This ambiguity must be taken into
|
|
* account when using the output of this function.
|
|
*
|
|
*/
|
|
|
|
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#include "arm_helium_utils.h"
|
|
|
|
#define R00 vgetq_lane(q1,0)
|
|
#define R01 vgetq_lane(q1,1)
|
|
#define R02 vgetq_lane(q1,2)
|
|
#define R10 vgetq_lane(q1,3)
|
|
#define R11 vgetq_lane(q2,0)
|
|
#define R12 vgetq_lane(q2,1)
|
|
#define R20 vgetq_lane(q2,2)
|
|
#define R21 vgetq_lane(q2,3)
|
|
#define R22 ro22
|
|
|
|
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
|
|
float32_t *pOutputQuaternions,
|
|
uint32_t nbQuaternions)
|
|
{
|
|
float32_t ro22, trace;
|
|
f32x4_t q1,q2, q;
|
|
|
|
float32_t doubler;
|
|
float32_t s;
|
|
|
|
q = vdupq_n_f32(0.0f);
|
|
|
|
for(uint32_t nb=0; nb < nbQuaternions; nb++)
|
|
{
|
|
q1 = vld1q(pInputRotations);
|
|
pInputRotations += 4;
|
|
|
|
q2 = vld1q(pInputRotations);
|
|
pInputRotations += 4;
|
|
|
|
ro22 = *pInputRotations++;
|
|
|
|
trace = R00 + R11 + R22;
|
|
|
|
|
|
if (trace > 0)
|
|
{
|
|
(void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw
|
|
doubler = 2.0f*doubler;
|
|
s = 1.0f / doubler;
|
|
|
|
q1 = vmulq_n_f32(q1,s);
|
|
q2 = vmulq_n_f32(q2,s);
|
|
|
|
q[0] = 0.25f * doubler;
|
|
q[1] = R21 - R12;
|
|
q[2] = R02 - R20;
|
|
q[3] = R10 - R01;
|
|
}
|
|
else if ((R00 > R11) && (R00 > R22) )
|
|
{
|
|
(void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx
|
|
doubler = 2.0f*doubler;
|
|
s = 1.0f / doubler;
|
|
|
|
q1 = vmulq_n_f32(q1,s);
|
|
q2 = vmulq_n_f32(q2,s);
|
|
|
|
q[0] = R21 - R12;
|
|
q[1] = 0.25f * doubler;
|
|
q[2] = R01 + R10;
|
|
q[3] = R02 + R20;
|
|
}
|
|
else if (R11 > R22)
|
|
{
|
|
(void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy
|
|
doubler = 2.0f*doubler;
|
|
s = 1.0f / doubler;
|
|
|
|
q1 = vmulq_n_f32(q1,s);
|
|
q2 = vmulq_n_f32(q2,s);
|
|
|
|
q[0] = R02 - R20;
|
|
q[1] = R01 + R10;
|
|
q[2] = 0.25f * doubler;
|
|
q[3] = R12 + R21;
|
|
}
|
|
else
|
|
{
|
|
(void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz
|
|
doubler = 2.0f*doubler;
|
|
s = 1.0f / doubler;
|
|
|
|
q1 = vmulq_n_f32(q1,s);
|
|
q2 = vmulq_n_f32(q2,s);
|
|
|
|
q[0] = R10 - R01;
|
|
q[1] = R02 + R20;
|
|
q[2] = R12 + R21;
|
|
q[3] = 0.25f * doubler;
|
|
}
|
|
|
|
vst1q(pOutputQuaternions, q);
|
|
pOutputQuaternions += 4;
|
|
|
|
}
|
|
}
|
|
|
|
#else
|
|
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
|
|
float32_t *pOutputQuaternions,
|
|
uint32_t nbQuaternions)
|
|
{
|
|
uint32_t nb;
|
|
for(nb=0; nb < nbQuaternions; nb++)
|
|
{
|
|
const float32_t *r=&pInputRotations[nb*9];
|
|
float32_t *q=&pOutputQuaternions[nb*4];
|
|
|
|
float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
|
|
|
|
float32_t doubler;
|
|
float32_t s;
|
|
|
|
|
|
|
|
if (trace > 0.0f)
|
|
{
|
|
doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw
|
|
s = 1.0f / doubler;
|
|
q[0] = 0.25f * doubler;
|
|
q[1] = (RI(2,1) - RI(1,2)) * s;
|
|
q[2] = (RI(0,2) - RI(2,0)) * s;
|
|
q[3] = (RI(1,0) - RI(0,1)) * s;
|
|
}
|
|
else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
|
|
{
|
|
doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx
|
|
s = 1.0f / doubler;
|
|
q[0] = (RI(2,1) - RI(1,2)) * s;
|
|
q[1] = 0.25f * doubler;
|
|
q[2] = (RI(0,1) + RI(1,0)) * s;
|
|
q[3] = (RI(0,2) + RI(2,0)) * s;
|
|
}
|
|
else if (RI(1,1) > RI(2,2))
|
|
{
|
|
doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy
|
|
s = 1.0f / doubler;
|
|
q[0] = (RI(0,2) - RI(2,0)) * s;
|
|
q[1] = (RI(0,1) + RI(1,0)) * s;
|
|
q[2] = 0.25f * doubler;
|
|
q[3] = (RI(1,2) + RI(2,1)) * s;
|
|
}
|
|
else
|
|
{
|
|
doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz
|
|
s = 1.0f / doubler;
|
|
q[0] = (RI(1,0) - RI(0,1)) * s;
|
|
q[1] = (RI(0,2) + RI(2,0)) * s;
|
|
q[2] = (RI(1,2) + RI(2,1)) * s;
|
|
q[3] = 0.25f * doubler;
|
|
}
|
|
|
|
}
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
@} end of RotQuat group
|
|
*/
|