stm32f407-openocd/Drivers/CMSIS/DSP/Source/QuaternionMathFunctions/arm_rotation2quaternion_f32.c

226 lines
5.7 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_rotation2quaternion_f32.c
* Description: Floating-point rotation to quaternion conversion
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/quaternion_math_functions.h"
#include <math.h>
#define RI(x,y) r[(3*(x) + (y))]
/**
@ingroup QuatConv
*/
/**
@defgroup RotQuat Rotation to Quaternion
Conversions from rotation to quaternion.
*/
/**
@addtogroup RotQuat
@{
*/
/**
* @brief Conversion of a rotation matrix to an equivalent quaternion.
* @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
* @param[out] pOutputQuaternions points to an array quaternions
* @param[in] nbQuaternions number of quaternions in the array
* @return none.
*
* q and -q are representing the same rotation. This ambiguity must be taken into
* account when using the output of this function.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#define R00 vgetq_lane(q1,0)
#define R01 vgetq_lane(q1,1)
#define R02 vgetq_lane(q1,2)
#define R10 vgetq_lane(q1,3)
#define R11 vgetq_lane(q2,0)
#define R12 vgetq_lane(q2,1)
#define R20 vgetq_lane(q2,2)
#define R21 vgetq_lane(q2,3)
#define R22 ro22
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
float32_t *pOutputQuaternions,
uint32_t nbQuaternions)
{
float32_t ro22, trace;
f32x4_t q1,q2, q;
float32_t doubler;
float32_t s;
q = vdupq_n_f32(0.0f);
for(uint32_t nb=0; nb < nbQuaternions; nb++)
{
q1 = vld1q(pInputRotations);
pInputRotations += 4;
q2 = vld1q(pInputRotations);
pInputRotations += 4;
ro22 = *pInputRotations++;
trace = R00 + R11 + R22;
if (trace > 0)
{
(void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = 0.25f * doubler;
q[1] = R21 - R12;
q[2] = R02 - R20;
q[3] = R10 - R01;
}
else if ((R00 > R11) && (R00 > R22) )
{
(void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R21 - R12;
q[1] = 0.25f * doubler;
q[2] = R01 + R10;
q[3] = R02 + R20;
}
else if (R11 > R22)
{
(void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R02 - R20;
q[1] = R01 + R10;
q[2] = 0.25f * doubler;
q[3] = R12 + R21;
}
else
{
(void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R10 - R01;
q[1] = R02 + R20;
q[2] = R12 + R21;
q[3] = 0.25f * doubler;
}
vst1q(pOutputQuaternions, q);
pOutputQuaternions += 4;
}
}
#else
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
float32_t *pOutputQuaternions,
uint32_t nbQuaternions)
{
uint32_t nb;
for(nb=0; nb < nbQuaternions; nb++)
{
const float32_t *r=&pInputRotations[nb*9];
float32_t *q=&pOutputQuaternions[nb*4];
float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
float32_t doubler;
float32_t s;
if (trace > 0.0f)
{
doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw
s = 1.0f / doubler;
q[0] = 0.25f * doubler;
q[1] = (RI(2,1) - RI(1,2)) * s;
q[2] = (RI(0,2) - RI(2,0)) * s;
q[3] = (RI(1,0) - RI(0,1)) * s;
}
else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
{
doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx
s = 1.0f / doubler;
q[0] = (RI(2,1) - RI(1,2)) * s;
q[1] = 0.25f * doubler;
q[2] = (RI(0,1) + RI(1,0)) * s;
q[3] = (RI(0,2) + RI(2,0)) * s;
}
else if (RI(1,1) > RI(2,2))
{
doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy
s = 1.0f / doubler;
q[0] = (RI(0,2) - RI(2,0)) * s;
q[1] = (RI(0,1) + RI(1,0)) * s;
q[2] = 0.25f * doubler;
q[3] = (RI(1,2) + RI(2,1)) * s;
}
else
{
doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz
s = 1.0f / doubler;
q[0] = (RI(1,0) - RI(0,1)) * s;
q[1] = (RI(0,2) + RI(2,0)) * s;
q[2] = (RI(1,2) + RI(2,1)) * s;
q[3] = 0.25f * doubler;
}
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of RotQuat group
*/