stm32f407-openocd/Drivers/CMSIS/DSP/Source/QuaternionMathFunctions/arm_quaternion2rotation_f32.c

182 lines
5.7 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_quaternion2rotation_f32.c
* Description: Floating-point quaternion 2 rotation conversion
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/quaternion_math_functions.h"
#include <math.h>
/**
@ingroup groupQuaternionMath
*/
/**
@defgroup QuatConv Quaternion conversions
Conversions between quaternion and rotation representations.
*/
/**
@ingroup QuatConv
*/
/**
@defgroup QuatRot Quaternion to Rotation
Conversions from quaternion to rotation.
*/
/**
@addtogroup QuatRot
@{
*/
/**
@brief Conversion of quaternion to equivalent rotation matrix.
@param[in] pInputQuaternions points to an array of normalized quaternions
@param[out] pOutputRotations points to an array of 3x3 rotations (in row order)
@param[in] nbQuaternions number of quaternions in the array
@return none.
@par
Format of rotation matrix
The quaternion a + ib + jc + kd is converted into rotation matrix:
<pre>
a^2 + b^2 - c^2 - d^2 2bc - 2ad 2bd + 2ac
2bc + 2ad a^2 - b^2 + c^2 - d^2 2cd - 2ab
2bd - 2ac 2cd + 2ab a^2 - b^2 - c^2 + d^2
</pre>
Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions,
float32_t *pOutputRotations,
uint32_t nbQuaternions)
{
f32x4_t vec0,vec1, vec2 ,vec3;
float32_t q2q3, tmp1, tmp2 ;
for(uint32_t nb=0; nb < nbQuaternions; nb++)
{
// q0 q1 q2 q3
vec0 = vld1q(pInputQuaternions);
// q0^2 q1^2 q2^2 q3^2
vec1 = vmulq(vec0,vec0);
// q0^2 q1q0 q2q0 q3q0
vec2 = vmulq_n_f32(vec0, vgetq_lane(vec0,0));
// 2 (q0^2 q1q0 q2q0 q3q0)
vec2 = vmulq_n_f32(vec2, 2.0f);
// 2 q2q3
q2q3 = vgetq_lane(vec0,2) * vgetq_lane(vec0,3);
q2q3 = q2q3 * 2.0f;
// 2 (q0q1 q1^2 q2q1 q3q1)
vec3 = vmulq_n_f32(vec0, vgetq_lane(vec0,1));
vec3 = vmulq_n_f32(vec3, 2.0f);
vec0 = vsetq_lane(vgetq_lane(vec1,0) + vgetq_lane(vec1,1),vec0,0);
vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,2),vec0,0);
vec0 = vsetq_lane(vgetq_lane(vec0,0) - vgetq_lane(vec1,3),vec0,0);
vec0 = vsetq_lane(vgetq_lane(vec3,2) - vgetq_lane(vec2,3),vec0,1);
vec0 = vsetq_lane(vgetq_lane(vec3,3) + vgetq_lane(vec2,2),vec0,2);
vec0 = vsetq_lane(vgetq_lane(vec3,2) + vgetq_lane(vec2,3),vec0,3);
vst1q(pOutputRotations, vec0);
pOutputRotations += 4;
tmp1 = vgetq_lane(vec1,0) - vgetq_lane(vec1,1);
tmp2 = vgetq_lane(vec1,2) - vgetq_lane(vec1,3);
vec0 = vsetq_lane(tmp1 + tmp2,vec0,0);
vec0 = vsetq_lane(q2q3 - vgetq_lane(vec2,1) ,vec0,1);
vec0 = vsetq_lane(vgetq_lane(vec3,3) - vgetq_lane(vec2,2),vec0,2);
vec0 = vsetq_lane(q2q3 + vgetq_lane(vec2,1) ,vec0,3);
vst1q(pOutputRotations, vec0);
pOutputRotations += 4;
*pOutputRotations = tmp1 - tmp2;
pOutputRotations ++;
pInputQuaternions += 4;
}
}
#else
void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions,
float32_t *pOutputRotations,
uint32_t nbQuaternions)
{
uint32_t nb;
for(nb=0; nb < nbQuaternions; nb++)
{
float32_t q00 = SQ(pInputQuaternions[0 + nb * 4]);
float32_t q11 = SQ(pInputQuaternions[1 + nb * 4]);
float32_t q22 = SQ(pInputQuaternions[2 + nb * 4]);
float32_t q33 = SQ(pInputQuaternions[3 + nb * 4]);
float32_t q01 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[1 + nb * 4];
float32_t q02 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[2 + nb * 4];
float32_t q03 = pInputQuaternions[0 + nb * 4]*pInputQuaternions[3 + nb * 4];
float32_t q12 = pInputQuaternions[1 + nb * 4]*pInputQuaternions[2 + nb * 4];
float32_t q13 = pInputQuaternions[1 + nb * 4]*pInputQuaternions[3 + nb * 4];
float32_t q23 = pInputQuaternions[2 + nb * 4]*pInputQuaternions[3 + nb * 4];
float32_t xx = q00 + q11 - q22 - q33;
float32_t yy = q00 - q11 + q22 - q33;
float32_t zz = q00 - q11 - q22 + q33;
float32_t xy = 2*(q12 - q03);
float32_t xz = 2*(q13 + q02);
float32_t yx = 2*(q12 + q03);
float32_t yz = 2*(q23 - q01);
float32_t zx = 2*(q13 - q02);
float32_t zy = 2*(q23 + q01);
pOutputRotations[0 + nb * 9] = xx; pOutputRotations[1 + nb * 9] = xy; pOutputRotations[2 + nb * 9] = xz;
pOutputRotations[3 + nb * 9] = yx; pOutputRotations[4 + nb * 9] = yy; pOutputRotations[5 + nb * 9] = yz;
pOutputRotations[6 + nb * 9] = zx; pOutputRotations[7 + nb * 9] = zy; pOutputRotations[8 + nb * 9] = zz;
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of QuatRot group
*/