679 lines
21 KiB
C
679 lines
21 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_mult_q7.c
|
|
* Description: Q15 matrix multiplication
|
|
*
|
|
* $Date: 23 April 2021
|
|
*
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
@addtogroup MatrixMult
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
* @brief Q7 matrix multiplication
|
|
* @param[in] *pSrcA points to the first input matrix structure
|
|
* @param[in] *pSrcB points to the second input matrix structure
|
|
* @param[out] *pDst points to output matrix structure
|
|
* @param[in] *pState points to the array for storing intermediate results (Unused in some versions)
|
|
* @return The function returns either
|
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
*
|
|
* @details
|
|
* <b>Scaling and Overflow Behavior:</b>
|
|
*
|
|
* \par
|
|
* The function is implemented using a 32-bit internal accumulator saturated to 1.7 format.
|
|
*
|
|
*
|
|
*/
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_2x2_mve(
|
|
const arm_matrix_instance_q7 * pSrcA,
|
|
const arm_matrix_instance_q7 * pSrcB,
|
|
arm_matrix_instance_q7 * pDst)
|
|
{
|
|
const uint32_t MATRIX_DIM = 2;
|
|
q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */
|
|
q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q7_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint8x16_t vecColBOffs;
|
|
q7_t *pInA0 = pInA;
|
|
q7_t *pInA1 = pInA0 + MATRIX_DIM;
|
|
q31_t acc0, acc1;
|
|
q7x16_t vecB, vecA0, vecA1;
|
|
mve_pred16_t p0 = vctp8q(MATRIX_DIM);
|
|
|
|
vecColBOffs = vidupq_u8((uint32_t)0, 2); /* MATRIX_DIM */
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrbq_s8(pInA0);
|
|
vecA1 = vldrbq_s8(pInA1);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_3x3_mve(
|
|
const arm_matrix_instance_q7 * pSrcA,
|
|
const arm_matrix_instance_q7 * pSrcB,
|
|
arm_matrix_instance_q7 * pDst)
|
|
{
|
|
const uint8_t MATRIX_DIM = 3;
|
|
q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */
|
|
q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q7_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint8x16_t vecColBOffs;
|
|
q7_t *pInA0 = pInA;
|
|
q7_t *pInA1 = pInA0 + MATRIX_DIM;
|
|
q7_t *pInA2 = pInA1 + MATRIX_DIM;
|
|
q31_t acc0, acc1, acc2;
|
|
q7x16_t vecB, vecA0, vecA1, vecA2;
|
|
mve_pred16_t p0 = vctp8q(MATRIX_DIM);
|
|
|
|
vecColBOffs = vidupq_u8((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrbq_s8(pInA0);
|
|
vecA1 = vldrbq_s8(pInA1);
|
|
vecA2 = vldrbq_s8(pInA2);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_4x4_mve(
|
|
const arm_matrix_instance_q7 * pSrcA,
|
|
const arm_matrix_instance_q7 * pSrcB,
|
|
arm_matrix_instance_q7 * pDst)
|
|
{
|
|
const uint32_t MATRIX_DIM = 4;
|
|
q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */
|
|
q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q7_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint8x16_t vecColBOffs;
|
|
q7_t *pInA0 = pInA;
|
|
q7_t *pInA1 = pInA0 + MATRIX_DIM;
|
|
q7_t *pInA2 = pInA1 + MATRIX_DIM;
|
|
q7_t *pInA3 = pInA2 + MATRIX_DIM;
|
|
q31_t acc0, acc1, acc2, acc3;
|
|
q7x16_t vecB, vecA0, vecA1, vecA2, vecA3;
|
|
mve_pred16_t p0 = vctp8q(MATRIX_DIM);
|
|
|
|
vecColBOffs = vidupq_u8((uint32_t)0, 4);
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrbq_s8(pInA0);
|
|
vecA1 = vldrbq_s8(pInA1);
|
|
vecA2 = vldrbq_s8(pInA2);
|
|
vecA3 = vldrbq_s8(pInA3);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
acc3 = vmladavq_s8(vecA3, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
acc3 = vmladavq_s8(vecA3, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
acc3 = vmladavq_s8(vecA3, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmladavq_s8(vecA0, vecB);
|
|
acc1 = vmladavq_s8(vecA1, vecB);
|
|
acc2 = vmladavq_s8(vecA2, vecB);
|
|
acc3 = vmladavq_s8(vecA3, vecB);
|
|
|
|
pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
arm_status arm_mat_mult_q7(
|
|
const arm_matrix_instance_q7 * pSrcA,
|
|
const arm_matrix_instance_q7 * pSrcB,
|
|
arm_matrix_instance_q7 * pDst,
|
|
q7_t * pState)
|
|
{
|
|
q7_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q7 type */
|
|
q7_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q7 type */
|
|
q7_t *pInA2;
|
|
q7_t *pInB2;
|
|
q7_t *px; /* Temporary output data matrix pointer */
|
|
q7_t *px2; /* Temporary output data matrix pointer */
|
|
uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
|
uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
|
|
q7_t *pSrcBT = pState; /* input data matrix pointer for transpose */
|
|
uint32_t blkCnt; /* loop counters */
|
|
arm_status status; /* status of matrix multiplication */
|
|
arm_matrix_instance_q7 BT;
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
|
/* small squared matrix specialized routines */
|
|
if(numRowsA == numColsB && numColsB == numColsA) {
|
|
if(numRowsA == 2)
|
|
return arm_mat_mult_q7_2x2_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 3)
|
|
return arm_mat_mult_q7_3x3_mve(pSrcA, pSrcB, pDst);
|
|
else if (numRowsA == 4)
|
|
return arm_mat_mult_q7_4x4_mve(pSrcA, pSrcB, pDst);
|
|
}
|
|
/*
|
|
* Matrix transpose
|
|
*/
|
|
|
|
BT.numRows = numColsB;
|
|
BT.numCols = numRowsB;
|
|
BT.pData = pSrcBT;
|
|
|
|
arm_mat_trans_q7(pSrcB, &BT);
|
|
|
|
/*
|
|
* Reset the variables for the usage in the following multiplication process
|
|
*/
|
|
i = 0;
|
|
row = numRowsA >> 1;
|
|
px = pDst->pData;
|
|
px2 = px + numColsB;
|
|
|
|
/*
|
|
* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
|
|
*/
|
|
|
|
/*
|
|
* row loop
|
|
*/
|
|
while (row > 0u)
|
|
{
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
*/
|
|
col = numColsB >> 1;
|
|
/*
|
|
* For every row wise process, the pIn2 pointer is set
|
|
* to the starting address of the transposed pSrcB data
|
|
*/
|
|
pInB = pSrcBT;
|
|
pInB2 = pInB + numRowsB;
|
|
j = 0;
|
|
|
|
/*
|
|
* column loop
|
|
*/
|
|
while (col > 0u)
|
|
{
|
|
q7_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
|
|
q7x16_t vecA, vecA2, vecB, vecB2;
|
|
q31_t acc0, acc1, acc2, acc3;
|
|
|
|
/*
|
|
* Initiate the pointer pIn1 to point to the starting address of the column being processed
|
|
*/
|
|
pInA = pSrcA->pData + i;
|
|
pInA2 = pInA + numColsA;
|
|
pInB = pSrcBT + j;
|
|
pInB2 = pInB + numRowsB;
|
|
|
|
pSrcAVec = (q7_t const *) pInA;
|
|
pSrcA2Vec = (q7_t const *)pInA2;
|
|
pSrcBVec = (q7_t const *) pInB;
|
|
pSrcB2Vec = (q7_t const *)pInB2;
|
|
|
|
acc0 = 0L;
|
|
acc1 = 0L;
|
|
acc2 = 0L;
|
|
acc3 = 0L;
|
|
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 16;
|
|
|
|
blkCnt = numColsA >> 4;
|
|
while (blkCnt > 0U)
|
|
{
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 16;
|
|
acc0 = vmladavaq_s8(acc0, vecA, vecB);
|
|
vecA2 = vld1q(pSrcA2Vec);
|
|
pSrcA2Vec += 16;
|
|
acc1 = vmladavaq_s8(acc1, vecA2, vecB);
|
|
vecB2 = vld1q(pSrcB2Vec);
|
|
pSrcB2Vec += 16;
|
|
acc2 = vmladavaq_s8(acc2, vecA, vecB2);
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 16;
|
|
acc3 = vmladavaq_s8(acc3, vecA2, vecB2);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = numColsA & 0xF;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp8q(blkCnt);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
|
|
vecA2 = vld1q(pSrcA2Vec);
|
|
acc1 = vmladavaq_p_s8(acc1, vecA2, vecB, p0);
|
|
vecB2 = vld1q(pSrcB2Vec);
|
|
acc2 = vmladavaq_p_s8(acc2, vecA, vecB2, p0);
|
|
vecA = vld1q(pSrcAVec);
|
|
acc3 = vmladavaq_p_s8(acc3, vecA2, vecB2, p0);
|
|
}
|
|
|
|
*px++ = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
*px++ = (q7_t) __SSAT(acc2 >> 7, 8);
|
|
*px2++ = (q7_t) __SSAT(acc1 >> 7, 8);
|
|
*px2++ = (q7_t) __SSAT(acc3 >> 7, 8);
|
|
j += numRowsB * 2;
|
|
/*
|
|
* Decrement the column loop counter
|
|
*/
|
|
col--;
|
|
|
|
}
|
|
|
|
i = i + numColsA * 2;
|
|
px = px2 + (numColsB & 1u);
|
|
px2 = px + numColsB;
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
row--;
|
|
}
|
|
|
|
/*
|
|
* Compute remaining row and/or column below
|
|
*/
|
|
|
|
if (numColsB & 1u)
|
|
{
|
|
row = numRowsA & (~0x1); //avoid redundant computation
|
|
px = pDst->pData + numColsB - 1;
|
|
i = 0;
|
|
|
|
/*
|
|
* row loop
|
|
*/
|
|
while (row > 0)
|
|
{
|
|
q7_t const *pSrcAVec, *pSrcBVec;
|
|
q7x16_t vecA, vecB;
|
|
q63_t acc0;
|
|
|
|
/*
|
|
* point to last column in matrix B
|
|
*/
|
|
pInB = pSrcBT + numRowsB * (numColsB - 1);
|
|
pInA = pSrcA->pData + i;
|
|
|
|
pSrcAVec = (q7_t const *) pInA;
|
|
pSrcBVec = (q7_t const *) pInB;
|
|
|
|
acc0 = 0LL;
|
|
blkCnt = (numColsA) >> 4;
|
|
while (blkCnt > 0U)
|
|
{
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 16;
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 16;
|
|
acc0 = vmladavaq_s8(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = numColsA & 0xF;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp8q(blkCnt);
|
|
vecA = vld1q(pSrcAVec);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
|
|
}
|
|
|
|
*px = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
|
|
px += numColsB;
|
|
|
|
i += numColsA;
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
row--;
|
|
}
|
|
}
|
|
|
|
if (numRowsA & 1u)
|
|
{
|
|
col = numColsB;
|
|
i = 0u;
|
|
/*
|
|
* point to last row in output matrix
|
|
*/
|
|
px = pDst->pData + (numColsB) * (numRowsA - 1);
|
|
/*
|
|
* col loop
|
|
*/
|
|
while (col > 0)
|
|
{
|
|
q7_t const *pSrcAVec, *pSrcBVec;
|
|
q7x16_t vecA, vecB;
|
|
q63_t acc0;
|
|
|
|
/*
|
|
* point to last row in matrix A
|
|
*/
|
|
pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
|
|
pInB = pSrcBT + i;
|
|
|
|
/*
|
|
* Set the variable sum, that acts as accumulator, to zero
|
|
*/
|
|
pSrcAVec = (q7_t const *) pInA;
|
|
pSrcBVec = (q7_t const *) pInB;
|
|
acc0 = 0LL;
|
|
|
|
blkCnt = (numColsA) >> 4;
|
|
while (blkCnt > 0U)
|
|
{
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 16;
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 16;
|
|
acc0 = vmladavaq_s8(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = numColsA & 0xF;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp8q(blkCnt);
|
|
vecA = vld1q(pSrcAVec);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0);
|
|
}
|
|
|
|
*px++ = (q7_t) __SSAT(acc0 >> 7, 8);
|
|
|
|
i += numColsA;
|
|
|
|
/*
|
|
* Decrement the col loop counter
|
|
*/
|
|
col--;
|
|
}
|
|
}
|
|
/*
|
|
* Return to application
|
|
*/
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
return(status);
|
|
}
|
|
#else
|
|
arm_status arm_mat_mult_q7(const arm_matrix_instance_q7 *pSrcA, const arm_matrix_instance_q7 *pSrcB, arm_matrix_instance_q7 *pDst, q7_t *pState)
|
|
{
|
|
q31_t sum; /* accumulator */
|
|
q7_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
|
|
q7_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
|
|
q7_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q7 type */
|
|
q7_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q7 type */
|
|
q7_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
q7_t *px; /* Temporary output data matrix pointer */
|
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint16_t col, i = 0U, row = numRowsA, colCnt; /* loop counters */
|
|
arm_status status; /* status of matrix multiplication */
|
|
|
|
(void)pState;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do {
|
|
/* Output pointer is set to starting address of the row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, the pIn2 pointer is set
|
|
** to the starting address of the pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
/* column loop */
|
|
do {
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0;
|
|
|
|
/* Initiate the pointer pIn1 to point to the starting address of pSrcA */
|
|
pIn1 = pInA;
|
|
|
|
/* Matrix A columns number of MAC operations are to be performed */
|
|
colCnt = numColsA;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U) {
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
/* Perform the multiply-accumulates */
|
|
sum += (q31_t)*pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement the loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
|
|
/* Saturate and store the result in the destination buffer */
|
|
*px++ = (q7_t)__SSAT((sum >> 7), 8);
|
|
|
|
/* Decrement the column loop counter */
|
|
col--;
|
|
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
|
pIn2 = pInB + (numColsB - col);
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update the pointer pSrcA to point to the starting address of the next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement the row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
/* set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEI) */
|
|
|
|
/**
|
|
@} end of MatrixMult group
|
|
*/
|