762 lines
23 KiB
C
762 lines
23 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_mult_q31.c
|
|
* Description: Q31 matrix multiplication
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
@addtogroup MatrixMult
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief Q31 matrix multiplication.
|
|
@param[in] pSrcA points to the first input matrix structure
|
|
@param[in] pSrcB points to the second input matrix structure
|
|
@param[out] pDst points to output matrix structure
|
|
@return execution status
|
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
|
|
@par Scaling and Overflow Behavior
|
|
The function is implemented using an internal 64-bit accumulator.
|
|
The accumulator has a 2.62 format and maintains full precision of the intermediate
|
|
multiplication results but provides only a single guard bit. There is no saturation
|
|
on intermediate additions. Thus, if the accumulator overflows it wraps around and
|
|
distorts the result. The input signals should be scaled down to avoid intermediate
|
|
overflows. The input is thus scaled down by log2(numColsA) bits
|
|
to avoid overflows, as a total of numColsA additions are performed internally.
|
|
The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
|
@remark
|
|
Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function.
|
|
*/
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#define MATRIX_DIM2 2
|
|
#define MATRIX_DIM3 3
|
|
#define MATRIX_DIM4 4
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q31_2x2_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM2;
|
|
q63_t acc0, acc1;
|
|
q31x4_t vecB, vecA0, vecA1;
|
|
/* enable predication to disable half of vector elements */
|
|
mve_pred16_t p0 = vctp32q(MATRIX_DIM2);
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM2;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
/* load 1st B column (partial load) */
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
/* load A rows */
|
|
vecA0 = vldrwq_s32(pInA0);
|
|
vecA1 = vldrwq_s32(pInA1);
|
|
|
|
acc0 = vrmlaldavhq(vecA0, vecB);
|
|
acc1 = vrmlaldavhq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vrmlaldavhq(vecA0, vecB);
|
|
acc1 = vrmlaldavhq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q31_3x3_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM3;
|
|
q31_t *pInA2 = pInA1 + MATRIX_DIM3;
|
|
q63_t acc0, acc1, acc2;
|
|
q31x4_t vecB, vecA;
|
|
/* enable predication to disable last (4th) vector element */
|
|
mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM3;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q31_4x4_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM4;
|
|
q31_t *pInA2 = pInA1 + MATRIX_DIM4;
|
|
q31_t *pInA3 = pInA2 + MATRIX_DIM4;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 4);
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
arm_status arm_mat_mult_q31(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t const *pInB = (q31_t const *)pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t const *pInA = (q31_t const *)pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
q31_t *px; /* Temporary output data matrix pointer */
|
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint16_t col, i = 0U, row = numRowsA; /* loop counters */
|
|
arm_status status; /* status of matrix multiplication */
|
|
uint32x4_t vecOffs, vecColBOffs;
|
|
uint32_t blkCnt, rowCnt; /* loop counters */
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* small squared matrix specialized routines */
|
|
if(numRowsA == numColsB && numColsB == numColsA) {
|
|
if (numRowsA == 1)
|
|
{
|
|
q63_t sum = (q63_t) *pInA * *pInB;
|
|
pOut[0] = (q31_t)(sum >> 31);
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
else if(numRowsA == 2)
|
|
return arm_mat_mult_q31_2x2_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 3)
|
|
return arm_mat_mult_q31_3x3_mve(pSrcA, pSrcB, pDst);
|
|
else if (numRowsA == 4)
|
|
return arm_mat_mult_q31_4x4_mve(pSrcA, pSrcB, pDst);
|
|
}
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * (uint32_t) (numColsB);
|
|
|
|
/*
|
|
* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
|
|
*/
|
|
|
|
/*
|
|
* row loop
|
|
*/
|
|
rowCnt = row >> 2;
|
|
while (rowCnt > 0U)
|
|
{
|
|
/*
|
|
* Output pointer is set to starting address of the row being processed
|
|
*/
|
|
px = pOut + i;
|
|
i = i + 4 * numColsB;
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
*/
|
|
col = numColsB;
|
|
/*
|
|
* For every row wise process, the pInB pointer is set
|
|
* to the starting address of the pSrcB data
|
|
*/
|
|
pInB = (q31_t const *)pSrcB->pData;
|
|
/*
|
|
* column loop
|
|
*/
|
|
while (col > 0U)
|
|
{
|
|
/*
|
|
* generate 4 columns elements
|
|
*/
|
|
/*
|
|
* Matrix A columns number of MAC operations are to be performed
|
|
*/
|
|
|
|
q31_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
|
|
q31_t const *pInA0 = pInA;
|
|
q31_t const *pInA1 = pInA0 + numColsA;
|
|
q31_t const *pInA2 = pInA1 + numColsA;
|
|
q31_t const *pInA3 = pInA2 + numColsA;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
|
|
acc0 = 0LL;
|
|
acc1 = 0LL;
|
|
acc2 = 0LL;
|
|
acc3 = 0LL;
|
|
|
|
pSrcA0Vec = (q31_t const *) pInA0;
|
|
pSrcA1Vec = (q31_t const *) pInA1;
|
|
pSrcA2Vec = (q31_t const *) pInA2;
|
|
pSrcA3Vec = (q31_t const *) pInA3;
|
|
|
|
vecOffs = vecColBOffs;
|
|
|
|
/* process 1 x 4 block output */
|
|
blkCnt = numColsA >> 2;
|
|
while (blkCnt > 0U)
|
|
{
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
|
|
/* move Matrix B read offsets, 4 rows down */
|
|
vecOffs = vecOffs + (uint32_t) (numColsB * 4);
|
|
|
|
vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
|
|
acc1 = vrmlaldavhaq(acc1, vecA, vecB);
|
|
vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
|
|
acc2 = vrmlaldavhaq(acc2, vecA, vecB);
|
|
vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
|
|
acc3 = vrmlaldavhaq(acc3, vecA, vecB);
|
|
blkCnt--;
|
|
}
|
|
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = numColsA & 3;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp32q(blkCnt);
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
|
|
//vecOffs = vecOffs + (uint32_t) (numColsB * 4);
|
|
|
|
vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
|
|
acc1 = vrmlaldavhaq(acc1, vecA, vecB);
|
|
vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
|
|
acc2 = vrmlaldavhaq(acc2, vecA, vecB);
|
|
vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
|
|
acc3 = vrmlaldavhaq(acc3, vecA, vecB);
|
|
}
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
px[0] = (q31_t) acc0;
|
|
px[1 * numColsB] = (q31_t) acc1;
|
|
px[2 * numColsB] = (q31_t) acc2;
|
|
px[3 * numColsB] = (q31_t) acc3;
|
|
px++;
|
|
/*
|
|
* Decrement the column loop counter
|
|
*/
|
|
col--;
|
|
/*
|
|
* Update the pointer pInB to point to the starting address of the next column
|
|
*/
|
|
pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
|
|
}
|
|
|
|
/*
|
|
* Update the pointer pInA to point to the starting address of the next row
|
|
*/
|
|
pInA += (numColsA * 4);
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
rowCnt --;
|
|
|
|
}
|
|
rowCnt = row & 3;
|
|
while (rowCnt > 0U)
|
|
{
|
|
/*
|
|
* Output pointer is set to starting address of the row being processed
|
|
*/
|
|
px = pOut + i;
|
|
i = i + numColsB;
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
*/
|
|
col = numColsB;
|
|
/*
|
|
* For every row wise process, the pInB pointer is set
|
|
* to the starting address of the pSrcB data
|
|
*/
|
|
pInB = (q31_t const *)pSrcB->pData;
|
|
/*
|
|
* column loop
|
|
*/
|
|
while (col > 0U)
|
|
{
|
|
/*
|
|
* generate 4 columns elements
|
|
*/
|
|
/*
|
|
* Matrix A columns number of MAC operations are to be performed
|
|
*/
|
|
|
|
q31_t const *pSrcA0Vec;
|
|
q31_t const *pInA0 = pInA;
|
|
q63_t acc0;
|
|
|
|
acc0 = 0LL;
|
|
|
|
|
|
pSrcA0Vec = (q31_t const *) pInA0;
|
|
|
|
vecOffs = vecColBOffs;
|
|
|
|
/* process 1 x 4 block output */
|
|
blkCnt = numColsA >> 2;
|
|
while (blkCnt > 0U)
|
|
{
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
|
|
/* move Matrix B read offsets, 4 rows down */
|
|
vecOffs = vecOffs + (uint32_t) (numColsB * 4);
|
|
|
|
vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
}
|
|
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = numColsA & 3;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp32q(blkCnt);
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
|
|
//vecOffs = vecOffs + (uint32_t) (numColsB * 4);
|
|
|
|
vecA = vld1q(pSrcA0Vec);
|
|
pSrcA0Vec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
|
|
}
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
|
|
|
|
px[0] = (q31_t) acc0;
|
|
px++;
|
|
/*
|
|
* Decrement the column loop counter
|
|
*/
|
|
col--;
|
|
/*
|
|
* Update the pointer pInB to point to the starting address of the next column
|
|
*/
|
|
pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
|
|
}
|
|
|
|
/*
|
|
* Update the pointer pInA to point to the starting address of the next row
|
|
*/
|
|
pInA += numColsA;
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
rowCnt--;
|
|
}
|
|
|
|
/*
|
|
* set status as ARM_MATH_SUCCESS
|
|
*/
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
|
|
#else
|
|
arm_status arm_mat_mult_q31(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
|
|
q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
|
|
q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
|
|
q31_t *pOut = pDst->pData; /* Output data matrix pointer */
|
|
q31_t *px; /* Temporary output data matrix pointer */
|
|
q63_t sum; /* Accumulator */
|
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
|
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do
|
|
{
|
|
/* Output pointer is set to starting address of row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
/* column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0;
|
|
|
|
/* Initialize pointer pIn1 to point to starting address of column being processed */
|
|
pIn1 = pInA;
|
|
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
|
|
/* Loop unrolling: Compute 4 MACs at a time. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Loop unrolling: Compute remaining MACs */
|
|
colCnt = numColsA % 0x4U;
|
|
|
|
#else
|
|
|
|
/* Initialize cntCnt with number of columns */
|
|
colCnt = numColsA;
|
|
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Convert result from 2.62 to 1.31 format and store in destination buffer */
|
|
*px++ = (q31_t) (sum >> 31);
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
|
|
/* Update pointer pIn2 to point to starting address of next column */
|
|
pIn2 = pInB + (numColsB - col);
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update pointer pInA to point to starting address of next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEI) */
|
|
|
|
/**
|
|
@} end of MatrixMult group
|
|
*/
|