1002 lines
31 KiB
C
1002 lines
31 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_mult_f32.c
|
|
* Description: Floating-point matrix multiplication
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
#if defined(ARM_MATH_NEON)
|
|
#define GROUPOFROWS 8
|
|
#endif
|
|
|
|
/**
|
|
* @ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
* @defgroup MatrixMult Matrix Multiplication
|
|
*
|
|
* Multiplies two matrices.
|
|
*
|
|
* \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
|
|
|
|
* Matrix multiplication is only defined if the number of columns of the
|
|
* first matrix equals the number of rows of the second matrix.
|
|
* Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
|
|
* in an <code>M x P</code> matrix.
|
|
* When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
|
|
* <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
|
|
* matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
|
|
*/
|
|
|
|
|
|
/**
|
|
* @addtogroup MatrixMult
|
|
* @{
|
|
*/
|
|
|
|
|
|
|
|
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#define MATRIX_DIM3 3
|
|
#define MATRIX_DIM4 4
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_f32_2x2_mve(
|
|
const arm_matrix_instance_f32 *pSrcA,
|
|
const arm_matrix_instance_f32 *pSrcB,
|
|
arm_matrix_instance_f32 *pDst)
|
|
{
|
|
/* {a00, a00, a10, a10} */
|
|
static const uint32_t offsetA0[4] = { 0, 0, 2, 2 };
|
|
/* {b00, b01, b00, b01} */
|
|
static const uint32_t offsetB0[4] = { 0, 1, 0, 1 };
|
|
/* {a01, a01, a11, a11} */
|
|
static const uint32_t offsetA1[4] = { 1, 1, 3, 3 };
|
|
/* {b10, b11, b10, b11} */
|
|
static const uint32_t offsetB1[4] = { 2, 3, 2, 3 };
|
|
|
|
uint32x4_t vecOffsA, vecOffsB;
|
|
f32x4_t vecInA, vecInB, vecDst;
|
|
|
|
vecOffsA = vldrwq_u32((uint32_t const *) offsetA0);
|
|
vecOffsB = vldrwq_u32((uint32_t const *) offsetB0);
|
|
|
|
vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
|
|
vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
|
|
|
|
vecDst = vmulq(vecInA, vecInB);
|
|
|
|
vecOffsA = vldrwq_u32((uint32_t const *) offsetA1);
|
|
vecOffsB = vldrwq_u32((uint32_t const *) offsetB1);
|
|
|
|
vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
|
|
vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
|
|
|
|
vecDst = vfmaq(vecDst, vecInA, vecInB);
|
|
|
|
vstrwq_f32(pDst->pData, vecDst);
|
|
|
|
return (ARM_MATH_SUCCESS);
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* A = {{a00, a01, a02},
|
|
* {a10, a11, a12},
|
|
* {a20, a21, a22}}
|
|
* B = {{b00, b01, b02},
|
|
* {b10, b11, b12},
|
|
* {b20, b21, b22}}
|
|
*
|
|
* Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22},
|
|
* {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22},
|
|
* {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}}
|
|
*/
|
|
__STATIC_INLINE arm_status arm_mat_mult_f32_3x3_mve(
|
|
const arm_matrix_instance_f32 *pSrcA,
|
|
const arm_matrix_instance_f32 *pSrcB,
|
|
arm_matrix_instance_f32 *pDst)
|
|
{
|
|
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
float32_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
float32_t *pInA0, *pInA1, *pInA2;
|
|
f32x4_t vecMac0, vecMac1, vecMac2;
|
|
f32x4_t vecInB;
|
|
float32_t const *pSrBVec;
|
|
|
|
pSrBVec = (float32_t const *) pInB;
|
|
|
|
pInA0 = pInA;
|
|
pInA1 = pInA0 + MATRIX_DIM3;
|
|
pInA2 = pInA1 + MATRIX_DIM3;
|
|
/* enable predication to disable last (4th) vector element */
|
|
mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
|
|
|
|
/*
|
|
* load {b0,0, b0,1, b0,2, 0}
|
|
*/
|
|
vecInB = vldrwq_z_f32(pSrBVec, p0);
|
|
pSrBVec += MATRIX_DIM3;
|
|
|
|
vecMac0 = vmulq(vecInB, *pInA0++);
|
|
vecMac1 = vmulq(vecInB, *pInA1++);
|
|
vecMac2 = vmulq(vecInB, *pInA2++);
|
|
/*
|
|
* load {b1,0, b1,1, b1,2, 0}
|
|
*/
|
|
vecInB = vldrwq_z_f32(pSrBVec, p0);
|
|
pSrBVec += MATRIX_DIM3;
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
/*
|
|
* load {b2,0, b2,1 , b2,2, 0}
|
|
*/
|
|
vecInB = vldrwq_z_f32(pSrBVec, p0);
|
|
pSrBVec += MATRIX_DIM3;
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
|
|
/* partial vector stores */
|
|
vstrwq_p_f32(pOut, vecMac0, p0);
|
|
pOut += MATRIX_DIM3;
|
|
vstrwq_p_f32(pOut, vecMac1, p0);
|
|
pOut += MATRIX_DIM3;
|
|
vstrwq_p_f32(pOut, vecMac2, p0);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve(
|
|
const arm_matrix_instance_f32 *pSrcA,
|
|
const arm_matrix_instance_f32 *pSrcB,
|
|
arm_matrix_instance_f32 *pDst)
|
|
{
|
|
float32_t const *pSrBVec;
|
|
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
float32_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
float32_t *pInA0, *pInA1, *pInA2, *pInA3;
|
|
f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
|
|
f32x4_t vecInB;
|
|
|
|
pSrBVec = (float32_t const *) pInB;
|
|
|
|
pInA0 = pInA;
|
|
pInA1 = pInA0 + MATRIX_DIM4;
|
|
pInA2 = pInA1 + MATRIX_DIM4;
|
|
pInA3 = pInA2 + MATRIX_DIM4;
|
|
/*
|
|
* load {b0,0, b0,1, b0,2, b0,3}
|
|
*/
|
|
vecInB = vld1q(pSrBVec);
|
|
pSrBVec += MATRIX_DIM4;
|
|
|
|
vecMac0 = vmulq(vecInB, *pInA0++);
|
|
vecMac1 = vmulq(vecInB, *pInA1++);
|
|
vecMac2 = vmulq(vecInB, *pInA2++);
|
|
vecMac3 = vmulq(vecInB, *pInA3++);
|
|
/*
|
|
* load {b1,0, b1,1, b1,2, b1,3}
|
|
*/
|
|
vecInB = vld1q(pSrBVec);
|
|
pSrBVec += MATRIX_DIM4;
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
|
|
/*
|
|
* load {b2,0, b2,1, b2,2, b2,3}
|
|
*/
|
|
vecInB = vld1q(pSrBVec);
|
|
pSrBVec += MATRIX_DIM4;
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
|
|
/*
|
|
* load {b3,0, b3,1, b3,2, b3,3}
|
|
*/
|
|
vecInB = vld1q(pSrBVec);
|
|
pSrBVec += MATRIX_DIM4;
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
|
|
|
|
vst1q(pOut, vecMac0);
|
|
pOut += MATRIX_DIM4;
|
|
vst1q(pOut, vecMac1);
|
|
pOut += MATRIX_DIM4;
|
|
vst1q(pOut, vecMac2);
|
|
pOut += MATRIX_DIM4;
|
|
vst1q(pOut, vecMac3);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Floating-point matrix multiplication.
|
|
* @param[in] *pSrcA points to the first input matrix structure
|
|
* @param[in] *pSrcB points to the second input matrix structure
|
|
* @param[out] *pDst points to output matrix structure
|
|
* @return The function returns either
|
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
*/
|
|
arm_status arm_mat_mult_f32(
|
|
const arm_matrix_instance_f32 * pSrcA,
|
|
const arm_matrix_instance_f32 * pSrcB,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
float32_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint32_t blkCnt; /* loop counters */
|
|
uint32_t i;
|
|
arm_status status;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
|
/* small squared matrix specialized routines */
|
|
if(numRowsA == numColsB && numColsB == numColsA) {
|
|
if (numRowsA == 1)
|
|
{
|
|
pOut[0] = pInA[0] * pInB[0];
|
|
return(ARM_MATH_SUCCESS);
|
|
}
|
|
else if(numRowsA == 2)
|
|
return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 3)
|
|
return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 4)
|
|
return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
|
|
}
|
|
|
|
/* main loop process 4 rows */
|
|
i = numRowsA >> 2;
|
|
while (i > 0U)
|
|
{
|
|
float32_t *pInA0, *pInA1, *pInA2, *pInA3;
|
|
float32_t *pInB0;
|
|
float32_t *pOut0, *pOut1, *pOut2, *pOut3;
|
|
f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
|
|
f32x4_t vecInB;
|
|
|
|
/* pointers to 4 consecutive output rows */
|
|
pOut0 = pOut;
|
|
pOut1 = pOut0 + numColsB;
|
|
pOut2 = pOut1 + numColsB;
|
|
pOut3 = pOut2 + numColsB;
|
|
pInB0 = pInB;
|
|
|
|
uint32_t k = numColsB >> 2;
|
|
while (k > 0U)
|
|
{
|
|
/* pointers to 4 consecutive Matrix A rows */
|
|
pInA0 = pInA;
|
|
pInA1 = pInA0 + numColsA;
|
|
pInA2 = pInA1 + numColsA;
|
|
pInA3 = pInA2 + numColsA;
|
|
|
|
vecMac0 = vdupq_n_f32(0.0f);
|
|
vecMac1 = vdupq_n_f32(0.0f);
|
|
vecMac2 = vdupq_n_f32(0.0f);
|
|
vecMac3 = vdupq_n_f32(0.0f);
|
|
|
|
blkCnt = numColsA;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/*
|
|
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
|
|
*/
|
|
vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
|
|
|
|
pInB0 = pInB0 + numColsB;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Store the results (4 x 4 block) in the destination buffer */
|
|
vst1q(pOut0, vecMac0);
|
|
pOut0 += 4;
|
|
vst1q(pOut1, vecMac1);
|
|
pOut1 += 4;
|
|
vst1q(pOut2, vecMac2);
|
|
pOut2 += 4;
|
|
vst1q(pOut3, vecMac3);
|
|
pOut3 += 4;
|
|
|
|
/*
|
|
* rewind
|
|
*/
|
|
pInB0 -= (numColsB * numColsA) - 4;
|
|
k--;
|
|
}
|
|
|
|
int colBLeft = numColsB & 3;
|
|
if (colBLeft)
|
|
{
|
|
pInA0 = pInA;
|
|
pInA1 = pInA0 + numColsA;
|
|
pInA2 = pInA1 + numColsA;
|
|
pInA3 = pInA2 + numColsA;
|
|
mve_pred16_t p0 = vctp32q(colBLeft);
|
|
|
|
vecMac0 = vdupq_n_f32(0.0f);
|
|
vecMac1 = vdupq_n_f32(0.0f);
|
|
vecMac2 = vdupq_n_f32(0.0f);
|
|
vecMac3 = vdupq_n_f32(0.0f);
|
|
|
|
blkCnt = numColsA;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/*
|
|
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
|
|
*/
|
|
vecInB = vldrwq_z_f32(pInB0, p0);
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
|
|
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
|
|
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
|
|
|
|
pInB0 = pInB0 + numColsB;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Store the results (4 x colBLeft block) in the destination buffer */
|
|
vstrwq_p_f32(pOut0, vecMac0, p0);
|
|
vstrwq_p_f32(pOut1, vecMac1, p0);
|
|
vstrwq_p_f32(pOut2, vecMac2, p0);
|
|
vstrwq_p_f32(pOut3, vecMac3, p0);
|
|
}
|
|
|
|
/* move to next rows */
|
|
pInA += 4 * numColsA;
|
|
pOut += 4 * numColsB;
|
|
i--;
|
|
}
|
|
|
|
/*
|
|
* non multiple of 4 rows for Matrix A
|
|
* process single row
|
|
*/
|
|
if (numRowsA & 3)
|
|
{
|
|
i = numRowsA & 3;
|
|
while (i > 0U)
|
|
{
|
|
float32_t *pInA0;
|
|
float32_t *pInB0;
|
|
float32_t *pOut0;
|
|
f32x4_t vecInB;
|
|
f32x4_t vecMac0;
|
|
|
|
pOut0 = pOut;
|
|
pInB0 = pInB;
|
|
|
|
uint32_t k = numColsB >> 2;
|
|
while (k > 0U)
|
|
{
|
|
pInA0 = pInA;
|
|
|
|
vecMac0 = vdupq_n_f32(0.0f);
|
|
blkCnt = numColsA;
|
|
while (blkCnt > 0U)
|
|
{
|
|
/*
|
|
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
|
|
*/
|
|
vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
|
|
pInB0 = pInB0 + numColsB;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Store the results (1 x 4 block) in the destination buffer */
|
|
vst1q(pOut0, vecMac0);
|
|
pOut0 += 4;
|
|
|
|
/*
|
|
* rewind
|
|
*/
|
|
pInB0 -= (numColsB * numColsA) - 4;
|
|
k--;
|
|
}
|
|
|
|
int colBLeft = numColsB & 3;
|
|
if (colBLeft)
|
|
{
|
|
pInA0 = pInA;
|
|
mve_pred16_t p0 = vctp32q(colBLeft);
|
|
|
|
vecMac0 = vdupq_n_f32(0.0f);
|
|
blkCnt = numColsA;
|
|
while (blkCnt > 0U)
|
|
{
|
|
/*
|
|
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
|
|
*/
|
|
vecInB = vldrwq_z_f32(pInB0, p0);
|
|
|
|
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
|
|
|
|
pInB0 = pInB0 + numColsB;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
/* Store the results (1 x colBLeft block) in the destination buffer */
|
|
vstrwq_p_f32(pOut0, vecMac0, p0);
|
|
}
|
|
|
|
/* move to next row */
|
|
pInA += 1 * numColsA;
|
|
pOut += 1 * numColsB;
|
|
i--;
|
|
}
|
|
|
|
}
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#else
|
|
|
|
#if defined(ARM_MATH_NEON)
|
|
/**
|
|
* @brief Floating-point matrix multiplication.
|
|
* @param[in] *pSrcA points to the first input matrix structure
|
|
* @param[in] *pSrcB points to the second input matrix structure
|
|
* @param[out] *pDst points to output matrix structure
|
|
* @return The function returns either
|
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
*/
|
|
arm_status arm_mat_mult_f32(
|
|
const arm_matrix_instance_f32 * pSrcA,
|
|
const arm_matrix_instance_f32 * pSrcB,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
|
|
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
|
|
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
float32_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
float32_t *px; /* Temporary output data matrix pointer */
|
|
float32_t sum; /* Accumulator */
|
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
|
|
|
|
uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
|
|
arm_status status; /* status of matrix multiplication */
|
|
|
|
float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
|
|
float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
|
|
float32x2_t accum = vdup_n_f32(0);
|
|
float32_t *pIn1B = pSrcA->pData;
|
|
float32_t *pIn1C = pSrcA->pData;
|
|
float32_t *pIn1D = pSrcA->pData;
|
|
float32_t *pIn1E = pSrcA->pData;
|
|
float32_t *pIn1F = pSrcA->pData;
|
|
float32_t *pIn1G = pSrcA->pData;
|
|
float32_t *pIn1H = pSrcA->pData;
|
|
|
|
float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
|
|
float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* Row loop */
|
|
rowCnt = row >> 3;
|
|
|
|
while(rowCnt > 0)
|
|
{
|
|
/* Output pointer is set to starting address of the row being processed */
|
|
px = pOut + GROUPOFROWS*i;
|
|
pxB = px + numColsB;
|
|
pxC = px + 2*numColsB;
|
|
pxD = px + 3*numColsB;
|
|
pxE = px + 4*numColsB;
|
|
pxF = px + 5*numColsB;
|
|
pxG = px + 6*numColsB;
|
|
pxH = px + 7*numColsB;
|
|
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, the pIn2 pointer is set
|
|
** to the starting address of the pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
j = 0U;
|
|
|
|
/* Column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum0 = 0.0f;
|
|
sum1 = 0.0f;
|
|
sum2 = 0.0f;
|
|
sum3 = 0.0f;
|
|
sum4 = 0.0f;
|
|
sum5 = 0.0f;
|
|
sum6 = 0.0f;
|
|
sum7 = 0.0f;
|
|
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
|
pIn1 = pInA;
|
|
pIn1B = pIn1 + numColsA;
|
|
pIn1C = pIn1 + 2*numColsA;
|
|
pIn1D = pIn1 + 3*numColsA;
|
|
pIn1E = pIn1 + 4*numColsA;
|
|
pIn1F = pIn1 + 5*numColsA;
|
|
pIn1G = pIn1 + 6*numColsA;
|
|
pIn1H = pIn1 + 7*numColsA;
|
|
|
|
acc0 = vdupq_n_f32(0.0);
|
|
acc1 = vdupq_n_f32(0.0);
|
|
acc2 = vdupq_n_f32(0.0);
|
|
acc3 = vdupq_n_f32(0.0);
|
|
acc4 = vdupq_n_f32(0.0);
|
|
acc5 = vdupq_n_f32(0.0);
|
|
acc6 = vdupq_n_f32(0.0);
|
|
acc7 = vdupq_n_f32(0.0);
|
|
|
|
/* Compute 4 MACs simultaneously. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* Matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
|
|
a0V = vld1q_f32(pIn1);
|
|
a1V = vld1q_f32(pIn1B);
|
|
a2V = vld1q_f32(pIn1C);
|
|
a3V = vld1q_f32(pIn1D);
|
|
a4V = vld1q_f32(pIn1E);
|
|
a5V = vld1q_f32(pIn1F);
|
|
a6V = vld1q_f32(pIn1G);
|
|
a7V = vld1q_f32(pIn1H);
|
|
|
|
pIn1 += 4;
|
|
pIn1B += 4;
|
|
pIn1C += 4;
|
|
pIn1D += 4;
|
|
pIn1E += 4;
|
|
pIn1F += 4;
|
|
pIn1G += 4;
|
|
pIn1H += 4;
|
|
|
|
temp = vsetq_lane_f32(*pIn2,temp,0);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,1);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,2);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,3);
|
|
pIn2 += numColsB;
|
|
|
|
acc0 = vmlaq_f32(acc0,a0V,temp);
|
|
acc1 = vmlaq_f32(acc1,a1V,temp);
|
|
acc2 = vmlaq_f32(acc2,a2V,temp);
|
|
acc3 = vmlaq_f32(acc3,a3V,temp);
|
|
acc4 = vmlaq_f32(acc4,a4V,temp);
|
|
acc5 = vmlaq_f32(acc5,a5V,temp);
|
|
acc6 = vmlaq_f32(acc6,a6V,temp);
|
|
acc7 = vmlaq_f32(acc7,a7V,temp);
|
|
|
|
/* Decrement the loop count */
|
|
colCnt--;
|
|
}
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
|
|
sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
|
|
sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
|
|
sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
|
|
sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
|
|
sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
|
|
sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
|
|
sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
|
|
sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
|
|
** No loop unrolling is used. */
|
|
colCnt = numColsA & 3;
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
|
|
sum0 += *pIn1++ * (*pIn2);
|
|
sum1 += *pIn1B++ * (*pIn2);
|
|
sum2 += *pIn1C++ * (*pIn2);
|
|
sum3 += *pIn1D++ * (*pIn2);
|
|
sum4 += *pIn1E++ * (*pIn2);
|
|
sum5 += *pIn1F++ * (*pIn2);
|
|
sum6 += *pIn1G++ * (*pIn2);
|
|
sum7 += *pIn1H++ * (*pIn2);
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement the loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Store the result in the destination buffer */
|
|
*px++ = sum0;
|
|
*pxB++ = sum1;
|
|
*pxC++ = sum2;
|
|
*pxD++ = sum3;
|
|
*pxE++ = sum4;
|
|
*pxF++ = sum5;
|
|
*pxG++ = sum6;
|
|
*pxH++ = sum7;
|
|
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
|
j++;
|
|
pIn2 = pSrcB->pData + j;
|
|
|
|
/* Decrement the column loop counter */
|
|
col--;
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update the pointer pInA to point to the starting address of the next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + GROUPOFROWS*numColsA;
|
|
|
|
/* Decrement the row loop counter */
|
|
rowCnt--;
|
|
}
|
|
|
|
/*
|
|
|
|
i was the index of a group of rows computed by previous loop.
|
|
Now i is the index of a row since below code is computing row per row
|
|
and no more group of row per group of rows.
|
|
|
|
*/
|
|
|
|
i = GROUPOFROWS*i;
|
|
rowCnt = row & 7;
|
|
|
|
while(rowCnt > 0)
|
|
{
|
|
/* Output pointer is set to starting address of the row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, the pIn2 pointer is set
|
|
** to the starting address of the pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
j = 0U;
|
|
|
|
/* Column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0.0f;
|
|
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
|
pIn1 = pInA;
|
|
|
|
acc0 = vdupq_n_f32(0.0);
|
|
|
|
/* Compute 4 MACs simultaneously. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* Matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
|
|
a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
|
|
pIn1 += 4;
|
|
|
|
temp = vsetq_lane_f32(*pIn2,temp,0);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,1);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,2);
|
|
pIn2 += numColsB;
|
|
temp = vsetq_lane_f32(*pIn2,temp,3);
|
|
pIn2 += numColsB;
|
|
|
|
acc0 = vmlaq_f32(acc0,a0V,temp);
|
|
|
|
/* Decrement the loop count */
|
|
colCnt--;
|
|
}
|
|
|
|
accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
|
|
sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
|
|
** No loop unrolling is used. */
|
|
colCnt = numColsA % 0x4U;
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
|
|
sum += *pIn1++ * (*pIn2);
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement the loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Store the result in the destination buffer */
|
|
*px++ = sum;
|
|
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
|
j++;
|
|
pIn2 = pSrcB->pData + j;
|
|
|
|
/* Decrement the column loop counter */
|
|
col--;
|
|
|
|
} while (col > 0U);
|
|
|
|
|
|
/* Update the pointer pInA to point to the starting address of the next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement the row loop counter */
|
|
rowCnt--;
|
|
|
|
}
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#else
|
|
/**
|
|
* @brief Floating-point matrix multiplication.
|
|
* @param[in] *pSrcA points to the first input matrix structure
|
|
* @param[in] *pSrcB points to the second input matrix structure
|
|
* @param[out] *pDst points to output matrix structure
|
|
* @return The function returns either
|
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
*/
|
|
arm_status arm_mat_mult_f32(
|
|
const arm_matrix_instance_f32 * pSrcA,
|
|
const arm_matrix_instance_f32 * pSrcB,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
|
|
float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
|
|
float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
|
|
float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
|
|
float32_t *pOut = pDst->pData; /* Output data matrix pointer */
|
|
float32_t *px; /* Temporary output data matrix pointer */
|
|
float32_t sum; /* Accumulator */
|
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
|
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do
|
|
{
|
|
/* Output pointer is set to starting address of row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
/* column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0.0f;
|
|
|
|
/* Initialize pointer pIn1 to point to starting address of column being processed */
|
|
pIn1 = pInA;
|
|
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
|
|
/* Loop unrolling: Compute 4 MACs at a time. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Loop unrolling: Compute remaining MACs */
|
|
colCnt = numColsA % 0x4U;
|
|
|
|
#else
|
|
|
|
/* Initialize cntCnt with number of columns */
|
|
colCnt = numColsA;
|
|
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Store result in destination buffer */
|
|
*px++ = sum;
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
|
|
/* Update pointer pIn2 to point to starting address of next column */
|
|
pIn2 = pInB + (numColsB - col);
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update pointer pInA to point to starting address of next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
|
|
#endif /* #if defined(ARM_MATH_NEON) */
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
* @} end of MatrixMult group
|
|
*/
|