stm32f407-openocd/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c

1002 lines
31 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_mult_f32.c
* Description: Floating-point matrix multiplication
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
#if defined(ARM_MATH_NEON)
#define GROUPOFROWS 8
#endif
/**
* @ingroup groupMatrix
*/
/**
* @defgroup MatrixMult Matrix Multiplication
*
* Multiplies two matrices.
*
* \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
* Matrix multiplication is only defined if the number of columns of the
* first matrix equals the number of rows of the second matrix.
* Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
* in an <code>M x P</code> matrix.
* When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
* <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
* matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
*/
/**
* @addtogroup MatrixMult
* @{
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#define MATRIX_DIM3 3
#define MATRIX_DIM4 4
__STATIC_INLINE arm_status arm_mat_mult_f32_2x2_mve(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst)
{
/* {a00, a00, a10, a10} */
static const uint32_t offsetA0[4] = { 0, 0, 2, 2 };
/* {b00, b01, b00, b01} */
static const uint32_t offsetB0[4] = { 0, 1, 0, 1 };
/* {a01, a01, a11, a11} */
static const uint32_t offsetA1[4] = { 1, 1, 3, 3 };
/* {b10, b11, b10, b11} */
static const uint32_t offsetB1[4] = { 2, 3, 2, 3 };
uint32x4_t vecOffsA, vecOffsB;
f32x4_t vecInA, vecInB, vecDst;
vecOffsA = vldrwq_u32((uint32_t const *) offsetA0);
vecOffsB = vldrwq_u32((uint32_t const *) offsetB0);
vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
vecDst = vmulq(vecInA, vecInB);
vecOffsA = vldrwq_u32((uint32_t const *) offsetA1);
vecOffsB = vldrwq_u32((uint32_t const *) offsetB1);
vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA);
vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB);
vecDst = vfmaq(vecDst, vecInA, vecInB);
vstrwq_f32(pDst->pData, vecDst);
return (ARM_MATH_SUCCESS);
}
/*
* A = {{a00, a01, a02},
* {a10, a11, a12},
* {a20, a21, a22}}
* B = {{b00, b01, b02},
* {b10, b11, b12},
* {b20, b21, b22}}
*
* Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22},
* {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22},
* {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}}
*/
__STATIC_INLINE arm_status arm_mat_mult_f32_3x3_mve(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst)
{
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *pInA0, *pInA1, *pInA2;
f32x4_t vecMac0, vecMac1, vecMac2;
f32x4_t vecInB;
float32_t const *pSrBVec;
pSrBVec = (float32_t const *) pInB;
pInA0 = pInA;
pInA1 = pInA0 + MATRIX_DIM3;
pInA2 = pInA1 + MATRIX_DIM3;
/* enable predication to disable last (4th) vector element */
mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
/*
* load {b0,0, b0,1, b0,2, 0}
*/
vecInB = vldrwq_z_f32(pSrBVec, p0);
pSrBVec += MATRIX_DIM3;
vecMac0 = vmulq(vecInB, *pInA0++);
vecMac1 = vmulq(vecInB, *pInA1++);
vecMac2 = vmulq(vecInB, *pInA2++);
/*
* load {b1,0, b1,1, b1,2, 0}
*/
vecInB = vldrwq_z_f32(pSrBVec, p0);
pSrBVec += MATRIX_DIM3;
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
/*
* load {b2,0, b2,1 , b2,2, 0}
*/
vecInB = vldrwq_z_f32(pSrBVec, p0);
pSrBVec += MATRIX_DIM3;
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
/* partial vector stores */
vstrwq_p_f32(pOut, vecMac0, p0);
pOut += MATRIX_DIM3;
vstrwq_p_f32(pOut, vecMac1, p0);
pOut += MATRIX_DIM3;
vstrwq_p_f32(pOut, vecMac2, p0);
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve(
const arm_matrix_instance_f32 *pSrcA,
const arm_matrix_instance_f32 *pSrcB,
arm_matrix_instance_f32 *pDst)
{
float32_t const *pSrBVec;
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *pInA0, *pInA1, *pInA2, *pInA3;
f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
f32x4_t vecInB;
pSrBVec = (float32_t const *) pInB;
pInA0 = pInA;
pInA1 = pInA0 + MATRIX_DIM4;
pInA2 = pInA1 + MATRIX_DIM4;
pInA3 = pInA2 + MATRIX_DIM4;
/*
* load {b0,0, b0,1, b0,2, b0,3}
*/
vecInB = vld1q(pSrBVec);
pSrBVec += MATRIX_DIM4;
vecMac0 = vmulq(vecInB, *pInA0++);
vecMac1 = vmulq(vecInB, *pInA1++);
vecMac2 = vmulq(vecInB, *pInA2++);
vecMac3 = vmulq(vecInB, *pInA3++);
/*
* load {b1,0, b1,1, b1,2, b1,3}
*/
vecInB = vld1q(pSrBVec);
pSrBVec += MATRIX_DIM4;
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
/*
* load {b2,0, b2,1, b2,2, b2,3}
*/
vecInB = vld1q(pSrBVec);
pSrBVec += MATRIX_DIM4;
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
/*
* load {b3,0, b3,1, b3,2, b3,3}
*/
vecInB = vld1q(pSrBVec);
pSrBVec += MATRIX_DIM4;
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
vst1q(pOut, vecMac0);
pOut += MATRIX_DIM4;
vst1q(pOut, vecMac1);
pOut += MATRIX_DIM4;
vst1q(pOut, vecMac2);
pOut += MATRIX_DIM4;
vst1q(pOut, vecMac3);
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
/**
* @brief Floating-point matrix multiplication.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
int numColsB = pSrcB->numCols; /* number of columns of input matrix B */
int numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint32_t blkCnt; /* loop counters */
uint32_t i;
arm_status status;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* small squared matrix specialized routines */
if(numRowsA == numColsB && numColsB == numColsA) {
if (numRowsA == 1)
{
pOut[0] = pInA[0] * pInB[0];
return(ARM_MATH_SUCCESS);
}
else if(numRowsA == 2)
return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst);
else if(numRowsA == 3)
return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst);
else if(numRowsA == 4)
return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst);
}
/* main loop process 4 rows */
i = numRowsA >> 2;
while (i > 0U)
{
float32_t *pInA0, *pInA1, *pInA2, *pInA3;
float32_t *pInB0;
float32_t *pOut0, *pOut1, *pOut2, *pOut3;
f32x4_t vecMac0, vecMac1, vecMac2, vecMac3;
f32x4_t vecInB;
/* pointers to 4 consecutive output rows */
pOut0 = pOut;
pOut1 = pOut0 + numColsB;
pOut2 = pOut1 + numColsB;
pOut3 = pOut2 + numColsB;
pInB0 = pInB;
uint32_t k = numColsB >> 2;
while (k > 0U)
{
/* pointers to 4 consecutive Matrix A rows */
pInA0 = pInA;
pInA1 = pInA0 + numColsA;
pInA2 = pInA1 + numColsA;
pInA3 = pInA2 + numColsA;
vecMac0 = vdupq_n_f32(0.0f);
vecMac1 = vdupq_n_f32(0.0f);
vecMac2 = vdupq_n_f32(0.0f);
vecMac3 = vdupq_n_f32(0.0f);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
*/
vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (4 x 4 block) in the destination buffer */
vst1q(pOut0, vecMac0);
pOut0 += 4;
vst1q(pOut1, vecMac1);
pOut1 += 4;
vst1q(pOut2, vecMac2);
pOut2 += 4;
vst1q(pOut3, vecMac3);
pOut3 += 4;
/*
* rewind
*/
pInB0 -= (numColsB * numColsA) - 4;
k--;
}
int colBLeft = numColsB & 3;
if (colBLeft)
{
pInA0 = pInA;
pInA1 = pInA0 + numColsA;
pInA2 = pInA1 + numColsA;
pInA3 = pInA2 + numColsA;
mve_pred16_t p0 = vctp32q(colBLeft);
vecMac0 = vdupq_n_f32(0.0f);
vecMac1 = vdupq_n_f32(0.0f);
vecMac2 = vdupq_n_f32(0.0f);
vecMac3 = vdupq_n_f32(0.0f);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
*/
vecInB = vldrwq_z_f32(pInB0, p0);
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++);
vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++);
vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (4 x colBLeft block) in the destination buffer */
vstrwq_p_f32(pOut0, vecMac0, p0);
vstrwq_p_f32(pOut1, vecMac1, p0);
vstrwq_p_f32(pOut2, vecMac2, p0);
vstrwq_p_f32(pOut3, vecMac3, p0);
}
/* move to next rows */
pInA += 4 * numColsA;
pOut += 4 * numColsB;
i--;
}
/*
* non multiple of 4 rows for Matrix A
* process single row
*/
if (numRowsA & 3)
{
i = numRowsA & 3;
while (i > 0U)
{
float32_t *pInA0;
float32_t *pInB0;
float32_t *pOut0;
f32x4_t vecInB;
f32x4_t vecMac0;
pOut0 = pOut;
pInB0 = pInB;
uint32_t k = numColsB >> 2;
while (k > 0U)
{
pInA0 = pInA;
vecMac0 = vdupq_n_f32(0.0f);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
*/
vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (1 x 4 block) in the destination buffer */
vst1q(pOut0, vecMac0);
pOut0 += 4;
/*
* rewind
*/
pInB0 -= (numColsB * numColsA) - 4;
k--;
}
int colBLeft = numColsB & 3;
if (colBLeft)
{
pInA0 = pInA;
mve_pred16_t p0 = vctp32q(colBLeft);
vecMac0 = vdupq_n_f32(0.0f);
blkCnt = numColsA;
while (blkCnt > 0U)
{
/*
* load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3}
*/
vecInB = vldrwq_z_f32(pInB0, p0);
vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++);
pInB0 = pInB0 + numColsB;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* Store the results (1 x colBLeft block) in the destination buffer */
vstrwq_p_f32(pOut0, vecMac0, p0);
}
/* move to next row */
pInA += 1 * numColsA;
pOut += 1 * numColsB;
i--;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
#if defined(ARM_MATH_NEON)
/**
* @brief Floating-point matrix multiplication.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *px; /* Temporary output data matrix pointer */
float32_t sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
float32x2_t accum = vdup_n_f32(0);
float32_t *pIn1B = pSrcA->pData;
float32_t *pIn1C = pSrcA->pData;
float32_t *pIn1D = pSrcA->pData;
float32_t *pIn1E = pSrcA->pData;
float32_t *pIn1F = pSrcA->pData;
float32_t *pIn1G = pSrcA->pData;
float32_t *pIn1H = pSrcA->pData;
float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* Row loop */
rowCnt = row >> 3;
while(rowCnt > 0)
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + GROUPOFROWS*i;
pxB = px + numColsB;
pxC = px + 2*numColsB;
pxD = px + 3*numColsB;
pxE = px + 4*numColsB;
pxF = px + 5*numColsB;
pxG = px + 6*numColsB;
pxH = px + 7*numColsB;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0U;
/* Column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum0 = 0.0f;
sum1 = 0.0f;
sum2 = 0.0f;
sum3 = 0.0f;
sum4 = 0.0f;
sum5 = 0.0f;
sum6 = 0.0f;
sum7 = 0.0f;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pIn1 = pInA;
pIn1B = pIn1 + numColsA;
pIn1C = pIn1 + 2*numColsA;
pIn1D = pIn1 + 3*numColsA;
pIn1E = pIn1 + 4*numColsA;
pIn1F = pIn1 + 5*numColsA;
pIn1G = pIn1 + 6*numColsA;
pIn1H = pIn1 + 7*numColsA;
acc0 = vdupq_n_f32(0.0);
acc1 = vdupq_n_f32(0.0);
acc2 = vdupq_n_f32(0.0);
acc3 = vdupq_n_f32(0.0);
acc4 = vdupq_n_f32(0.0);
acc5 = vdupq_n_f32(0.0);
acc6 = vdupq_n_f32(0.0);
acc7 = vdupq_n_f32(0.0);
/* Compute 4 MACs simultaneously. */
colCnt = numColsA >> 2U;
/* Matrix multiplication */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
a0V = vld1q_f32(pIn1);
a1V = vld1q_f32(pIn1B);
a2V = vld1q_f32(pIn1C);
a3V = vld1q_f32(pIn1D);
a4V = vld1q_f32(pIn1E);
a5V = vld1q_f32(pIn1F);
a6V = vld1q_f32(pIn1G);
a7V = vld1q_f32(pIn1H);
pIn1 += 4;
pIn1B += 4;
pIn1C += 4;
pIn1D += 4;
pIn1E += 4;
pIn1F += 4;
pIn1G += 4;
pIn1H += 4;
temp = vsetq_lane_f32(*pIn2,temp,0);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,1);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,2);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,3);
pIn2 += numColsB;
acc0 = vmlaq_f32(acc0,a0V,temp);
acc1 = vmlaq_f32(acc1,a1V,temp);
acc2 = vmlaq_f32(acc2,a2V,temp);
acc3 = vmlaq_f32(acc3,a3V,temp);
acc4 = vmlaq_f32(acc4,a4V,temp);
acc5 = vmlaq_f32(acc5,a5V,temp);
acc6 = vmlaq_f32(acc6,a6V,temp);
acc7 = vmlaq_f32(acc7,a7V,temp);
/* Decrement the loop count */
colCnt--;
}
accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
colCnt = numColsA & 3;
while (colCnt > 0U)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
sum0 += *pIn1++ * (*pIn2);
sum1 += *pIn1B++ * (*pIn2);
sum2 += *pIn1C++ * (*pIn2);
sum3 += *pIn1D++ * (*pIn2);
sum4 += *pIn1E++ * (*pIn2);
sum5 += *pIn1F++ * (*pIn2);
sum6 += *pIn1G++ * (*pIn2);
sum7 += *pIn1H++ * (*pIn2);
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Store the result in the destination buffer */
*px++ = sum0;
*pxB++ = sum1;
*pxC++ = sum2;
*pxD++ = sum3;
*pxE++ = sum4;
*pxF++ = sum5;
*pxG++ = sum6;
*pxH++ = sum7;
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = pSrcB->pData + j;
/* Decrement the column loop counter */
col--;
} while (col > 0U);
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + GROUPOFROWS*numColsA;
/* Decrement the row loop counter */
rowCnt--;
}
/*
i was the index of a group of rows computed by previous loop.
Now i is the index of a row since below code is computing row per row
and no more group of row per group of rows.
*/
i = GROUPOFROWS*i;
rowCnt = row & 7;
while(rowCnt > 0)
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0U;
/* Column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0.0f;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pIn1 = pInA;
acc0 = vdupq_n_f32(0.0);
/* Compute 4 MACs simultaneously. */
colCnt = numColsA >> 2U;
/* Matrix multiplication */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
pIn1 += 4;
temp = vsetq_lane_f32(*pIn2,temp,0);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,1);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,2);
pIn2 += numColsB;
temp = vsetq_lane_f32(*pIn2,temp,3);
pIn2 += numColsB;
acc0 = vmlaq_f32(acc0,a0V,temp);
/* Decrement the loop count */
colCnt--;
}
accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4U;
while (colCnt > 0U)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
sum += *pIn1++ * (*pIn2);
pIn2 += numColsB;
/* Decrement the loop counter */
colCnt--;
}
/* Store the result in the destination buffer */
*px++ = sum;
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = pSrcB->pData + j;
/* Decrement the column loop counter */
col--;
} while (col > 0U);
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement the row loop counter */
rowCnt--;
}
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
/**
* @brief Floating-point matrix multiplication.
* @param[in] *pSrcA points to the first input matrix structure
* @param[in] *pSrcB points to the second input matrix structure
* @param[out] *pDst points to output matrix structure
* @return The function returns either
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
*/
arm_status arm_mat_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
float32_t *pOut = pDst->pData; /* Output data matrix pointer */
float32_t *px; /* Temporary output data matrix pointer */
float32_t sum; /* Accumulator */
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
arm_status status; /* Status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of row being processed */
px = pOut + i;
/* For every row wise process, column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
pIn2 = pSrcB->pData;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sum = 0.0f;
/* Initialize pointer pIn1 to point to starting address of column being processed */
pIn1 = pInA;
#if defined (ARM_MATH_LOOPUNROLL)
/* Loop unrolling: Compute 4 MACs at a time. */
colCnt = numColsA >> 2U;
/* matrix multiplication */
while (colCnt > 0U)
{
/* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
/* Perform the multiply-accumulates */
sum += *pIn1++ * *pIn2;
pIn2 += numColsB;
sum += *pIn1++ * *pIn2;
pIn2 += numColsB;
sum += *pIn1++ * *pIn2;
pIn2 += numColsB;
sum += *pIn1++ * *pIn2;
pIn2 += numColsB;
/* Decrement loop counter */
colCnt--;
}
/* Loop unrolling: Compute remaining MACs */
colCnt = numColsA % 0x4U;
#else
/* Initialize cntCnt with number of columns */
colCnt = numColsA;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (colCnt > 0U)
{
/* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */
/* Perform the multiply-accumulates */
sum += *pIn1++ * *pIn2;
pIn2 += numColsB;
/* Decrement loop counter */
colCnt--;
}
/* Store result in destination buffer */
*px++ = sum;
/* Decrement column loop counter */
col--;
/* Update pointer pIn2 to point to starting address of next column */
pIn2 = pInB + (numColsB - col);
} while (col > 0U);
/* Update pointer pInA to point to starting address of next row */
i = i + numColsB;
pInA = pInA + numColsA;
/* Decrement row loop counter */
row--;
} while (row > 0U);
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* #if defined(ARM_MATH_NEON) */
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of MatrixMult group
*/