stm32f407-openocd/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f64.c

230 lines
5.1 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_ldl_f64.c
* Description: Floating-point LDL decomposition
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
#include <math.h>
/// @private
#define SWAP_ROWS_F64(A,i,j) \
{ \
int w; \
for(w=0;w < n; w++) \
{ \
float64_t tmp; \
tmp = A[i*n + w]; \
A[i*n + w] = A[j*n + w];\
A[j*n + w] = tmp; \
} \
}
/// @private
#define SWAP_COLS_F64(A,i,j) \
{ \
int w; \
for(w=0;w < n; w++) \
{ \
float64_t tmp; \
tmp = A[w*n + i]; \
A[w*n + i] = A[w*n + j];\
A[w*n + j] = tmp; \
} \
}
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixChol
@{
*/
/**
* @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
* @param[in] pSrc points to the instance of the input floating-point matrix structure.
* @param[out] pl points to the instance of the output floating-point triangular matrix structure.
* @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
* @param[out] pp points to the instance of the output floating-point permutation vector.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* @return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
* @par
* Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
*/
arm_status arm_mat_ldlt_f64(
const arm_matrix_instance_f64 * pSrc,
arm_matrix_instance_f64 * pl,
arm_matrix_instance_f64 * pd,
uint16_t * pp)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrc->numRows != pSrc->numCols) ||
(pl->numRows != pl->numCols) ||
(pd->numRows != pd->numCols) ||
(pl->numRows != pd->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
const int n=pSrc->numRows;
int fullRank = 1, diag,k;
float64_t *pA;
memset(pd->pData,0,sizeof(float64_t)*n*n);
memcpy(pl->pData,pSrc->pData,n*n*sizeof(float64_t));
pA = pl->pData;
for(k=0;k < n; k++)
{
pp[k] = k;
}
for(k=0;k < n; k++)
{
/* Find pivot */
float64_t m=F64_MIN,a;
int w,r,j=k;
for(r=k;r<n;r++)
{
if (pA[r*n+r] > m)
{
m = pA[r*n+r];
j = r;
}
}
if(j != k)
{
SWAP_ROWS_F64(pA,k,j);
SWAP_COLS_F64(pA,k,j);
}
pp[k] = j;
a = pA[k*n+k];
if (fabs(a) < 1.0e-18)
{
fullRank = 0;
break;
}
for(w=k+1;w<n;w++)
{
int x;
for(x=k+1;x<n;x++)
{
pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * pA[x*n+k] / a;
}
}
for(w=k+1;w<n;w++)
{
pA[w*n+k] = pA[w*n+k] / a;
}
}
diag=k;
if (!fullRank)
{
diag--;
{
int row;
for(row=0; row < n;row++)
{
int col;
for(col=k; col < n;col++)
{
pl->pData[row*n+col]=0.0;
}
}
}
}
{
int row;
for(row=0; row < n;row++)
{
int col;
for(col=row+1; col < n;col++)
{
pl->pData[row*n+col] = 0.0;
}
}
}
{
int d;
for(d=0; d < diag;d++)
{
pd->pData[d*n+d] = pl->pData[d*n+d];
pl->pData[d*n+d] = 1.0;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
@} end of MatrixChol group
*/