439 lines
11 KiB
C
439 lines
11 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_cholesky_f32.c
|
|
* Description: Floating-point Cholesky decomposition
|
|
*
|
|
* $Date: 05 October 2021
|
|
* $Revision: V1.9.1
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
@defgroup MatrixChol Cholesky and LDLT decompositions
|
|
|
|
Computes the Cholesky or LDL^t decomposition of a matrix.
|
|
|
|
|
|
If the input matrix does not have a decomposition, then the
|
|
algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE.
|
|
*/
|
|
|
|
/**
|
|
@addtogroup MatrixChol
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
* @brief Floating-point Cholesky decomposition of positive-definite matrix.
|
|
* @param[in] pSrc points to the instance of the input floating-point matrix structure.
|
|
* @param[out] pDst points to the instance of the output floating-point matrix structure.
|
|
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
|
* @return execution status
|
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
- \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
|
|
* @par
|
|
* If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition.
|
|
* The decomposition of A is returning a lower triangular matrix U such that A = U U^t
|
|
*/
|
|
|
|
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#include "arm_helium_utils.h"
|
|
|
|
arm_status arm_mat_cholesky_f32(
|
|
const arm_matrix_instance_f32 * pSrc,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
|
|
arm_status status; /* status of matrix inverse */
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrc->numRows != pSrc->numCols) ||
|
|
(pDst->numRows != pDst->numCols) ||
|
|
(pSrc->numRows != pDst->numRows) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
int i,j,k;
|
|
int n = pSrc->numRows;
|
|
float32_t invSqrtVj;
|
|
float32_t *pA,*pG;
|
|
int kCnt;
|
|
|
|
mve_pred16_t p0;
|
|
|
|
f32x4_t acc, acc0, acc1, acc2, acc3;
|
|
f32x4_t vecGi;
|
|
f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
|
|
|
|
|
|
pA = pSrc->pData;
|
|
pG = pDst->pData;
|
|
|
|
for(i=0 ;i < n ; i++)
|
|
{
|
|
for(j=i ; j+3 < n ; j+=4)
|
|
{
|
|
pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
|
|
pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
|
|
pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
|
|
pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
|
|
|
|
kCnt = i;
|
|
acc0 = vdupq_n_f32(0.0f);
|
|
acc1 = vdupq_n_f32(0.0f);
|
|
acc2 = vdupq_n_f32(0.0f);
|
|
acc3 = vdupq_n_f32(0.0f);
|
|
|
|
for(k=0; k < i ; k+=4)
|
|
{
|
|
p0 = vctp32q(kCnt);
|
|
|
|
vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
|
|
|
|
vecGj0=vldrwq_z_f32(&pG[(j + 0) * n + k],p0);
|
|
vecGj1=vldrwq_z_f32(&pG[(j + 1) * n + k],p0);
|
|
vecGj2=vldrwq_z_f32(&pG[(j + 2) * n + k],p0);
|
|
vecGj3=vldrwq_z_f32(&pG[(j + 3) * n + k],p0);
|
|
|
|
acc0 = vfmaq_m(acc0, vecGi, vecGj0, p0);
|
|
acc1 = vfmaq_m(acc1, vecGi, vecGj1, p0);
|
|
acc2 = vfmaq_m(acc2, vecGi, vecGj2, p0);
|
|
acc3 = vfmaq_m(acc3, vecGi, vecGj3, p0);
|
|
|
|
kCnt -= 4;
|
|
}
|
|
pG[(j + 0) * n + i] -= vecAddAcrossF32Mve(acc0);
|
|
pG[(j + 1) * n + i] -= vecAddAcrossF32Mve(acc1);
|
|
pG[(j + 2) * n + i] -= vecAddAcrossF32Mve(acc2);
|
|
pG[(j + 3) * n + i] -= vecAddAcrossF32Mve(acc3);
|
|
}
|
|
|
|
for(; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pA[j * n + i];
|
|
|
|
kCnt = i;
|
|
acc = vdupq_n_f32(0.0f);
|
|
|
|
for(k=0; k < i ; k+=4)
|
|
{
|
|
p0 = vctp32q(kCnt);
|
|
|
|
vecGi=vldrwq_z_f32(&pG[i * n + k],p0);
|
|
vecGj=vldrwq_z_f32(&pG[j * n + k],p0);
|
|
|
|
acc = vfmaq_m(acc, vecGi, vecGj,p0);
|
|
|
|
kCnt -= 4;
|
|
}
|
|
pG[j * n + i] -= vecAddAcrossF32Mve(acc);
|
|
}
|
|
|
|
if (pG[i * n + i] <= 0.0f)
|
|
{
|
|
return(ARM_MATH_DECOMPOSITION_FAILURE);
|
|
}
|
|
|
|
invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
|
|
for(j=i; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
|
|
}
|
|
}
|
|
|
|
status = ARM_MATH_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
|
|
#else
|
|
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
arm_status arm_mat_cholesky_f32(
|
|
const arm_matrix_instance_f32 * pSrc,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
|
|
arm_status status; /* status of matrix inverse */
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrc->numRows != pSrc->numCols) ||
|
|
(pDst->numRows != pDst->numCols) ||
|
|
(pSrc->numRows != pDst->numRows) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
int i,j,k;
|
|
int n = pSrc->numRows;
|
|
float32_t invSqrtVj;
|
|
float32_t *pA,*pG;
|
|
int kCnt;
|
|
|
|
|
|
f32x4_t acc, acc0, acc1, acc2, acc3;
|
|
f32x4_t vecGi;
|
|
f32x4_t vecGj,vecGj0,vecGj1,vecGj2,vecGj3;
|
|
#if !defined(__aarch64__)
|
|
f32x2_t tmp = vdup_n_f32(0);
|
|
#endif
|
|
float32_t sum=0.0f;
|
|
float32_t sum0=0.0f,sum1=0.0f,sum2=0.0f,sum3=0.0f;
|
|
|
|
|
|
pA = pSrc->pData;
|
|
pG = pDst->pData;
|
|
|
|
for(i=0 ;i < n ; i++)
|
|
{
|
|
for(j=i ; j+3 < n ; j+=4)
|
|
{
|
|
pG[(j + 0) * n + i] = pA[(j + 0) * n + i];
|
|
pG[(j + 1) * n + i] = pA[(j + 1) * n + i];
|
|
pG[(j + 2) * n + i] = pA[(j + 2) * n + i];
|
|
pG[(j + 3) * n + i] = pA[(j + 3) * n + i];
|
|
|
|
acc0 = vdupq_n_f32(0.0f);
|
|
acc1 = vdupq_n_f32(0.0f);
|
|
acc2 = vdupq_n_f32(0.0f);
|
|
acc3 = vdupq_n_f32(0.0f);
|
|
|
|
kCnt = i >> 2;
|
|
k=0;
|
|
while(kCnt > 0)
|
|
{
|
|
|
|
vecGi=vld1q_f32(&pG[i * n + k]);
|
|
|
|
vecGj0=vld1q_f32(&pG[(j + 0) * n + k]);
|
|
vecGj1=vld1q_f32(&pG[(j + 1) * n + k]);
|
|
vecGj2=vld1q_f32(&pG[(j + 2) * n + k]);
|
|
vecGj3=vld1q_f32(&pG[(j + 3) * n + k]);
|
|
|
|
acc0 = vfmaq_f32(acc0, vecGi, vecGj0);
|
|
acc1 = vfmaq_f32(acc1, vecGi, vecGj1);
|
|
acc2 = vfmaq_f32(acc2, vecGi, vecGj2);
|
|
acc3 = vfmaq_f32(acc3, vecGi, vecGj3);
|
|
|
|
kCnt--;
|
|
k+=4;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
sum0 = vpadds_f32(vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)));
|
|
sum1 = vpadds_f32(vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1)));
|
|
sum2 = vpadds_f32(vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2)));
|
|
sum3 = vpadds_f32(vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3)));
|
|
|
|
#else
|
|
tmp = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
|
|
sum0 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
|
|
|
|
tmp = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
|
|
sum1 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
|
|
|
|
tmp = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
|
|
sum2 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
|
|
|
|
tmp = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
|
|
sum3 = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
|
|
#endif
|
|
|
|
kCnt = i & 3;
|
|
while(kCnt > 0)
|
|
{
|
|
|
|
sum0 = sum0 + pG[i * n + k] * pG[(j + 0) * n + k];
|
|
sum1 = sum1 + pG[i * n + k] * pG[(j + 1) * n + k];
|
|
sum2 = sum2 + pG[i * n + k] * pG[(j + 2) * n + k];
|
|
sum3 = sum3 + pG[i * n + k] * pG[(j + 3) * n + k];
|
|
kCnt--;
|
|
k++;
|
|
}
|
|
|
|
pG[(j + 0) * n + i] -= sum0;
|
|
pG[(j + 1) * n + i] -= sum1;
|
|
pG[(j + 2) * n + i] -= sum2;
|
|
pG[(j + 3) * n + i] -= sum3;
|
|
}
|
|
|
|
for(; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pA[j * n + i];
|
|
|
|
acc = vdupq_n_f32(0.0f);
|
|
|
|
kCnt = i >> 2;
|
|
k=0;
|
|
while(kCnt > 0)
|
|
{
|
|
|
|
vecGi=vld1q_f32(&pG[i * n + k]);
|
|
vecGj=vld1q_f32(&pG[j * n + k]);
|
|
|
|
acc = vfmaq_f32(acc, vecGi, vecGj);
|
|
|
|
kCnt--;
|
|
k+=4;
|
|
}
|
|
|
|
#if defined(__aarch64__)
|
|
sum = vpadds_f32(vpadd_f32(vget_low_f32(acc), vget_high_f32(acc)));
|
|
#else
|
|
tmp = vpadd_f32(vget_low_f32(acc), vget_high_f32(acc));
|
|
sum = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1);
|
|
#endif
|
|
|
|
kCnt = i & 3;
|
|
while(kCnt > 0)
|
|
{
|
|
sum = sum + pG[i * n + k] * pG[(j + 0) * n + k];
|
|
|
|
|
|
kCnt--;
|
|
k++;
|
|
}
|
|
|
|
pG[j * n + i] -= sum;
|
|
}
|
|
|
|
if (pG[i * n + i] <= 0.0f)
|
|
{
|
|
return(ARM_MATH_DECOMPOSITION_FAILURE);
|
|
}
|
|
|
|
invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
|
|
for(j=i; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
|
|
}
|
|
}
|
|
|
|
status = ARM_MATH_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
|
|
#else
|
|
arm_status arm_mat_cholesky_f32(
|
|
const arm_matrix_instance_f32 * pSrc,
|
|
arm_matrix_instance_f32 * pDst)
|
|
{
|
|
|
|
arm_status status; /* status of matrix inverse */
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrc->numRows != pSrc->numCols) ||
|
|
(pDst->numRows != pDst->numCols) ||
|
|
(pSrc->numRows != pDst->numRows) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
int i,j,k;
|
|
int n = pSrc->numRows;
|
|
float32_t invSqrtVj;
|
|
float32_t *pA,*pG;
|
|
|
|
pA = pSrc->pData;
|
|
pG = pDst->pData;
|
|
|
|
|
|
for(i=0 ; i < n ; i++)
|
|
{
|
|
for(j=i ; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pA[j * n + i];
|
|
|
|
for(k=0; k < i ; k++)
|
|
{
|
|
pG[j * n + i] = pG[j * n + i] - pG[i * n + k] * pG[j * n + k];
|
|
}
|
|
}
|
|
|
|
if (pG[i * n + i] <= 0.0f)
|
|
{
|
|
return(ARM_MATH_DECOMPOSITION_FAILURE);
|
|
}
|
|
|
|
invSqrtVj = 1.0f/sqrtf(pG[i * n + i]);
|
|
for(j=i ; j < n ; j++)
|
|
{
|
|
pG[j * n + i] = pG[j * n + i] * invSqrtVj ;
|
|
}
|
|
}
|
|
|
|
status = ARM_MATH_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* #if defined(ARM_MATH_NEON) */
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
@} end of MatrixChol group
|
|
*/
|