134 lines
5.2 KiB
C
134 lines
5.2 KiB
C
/*
|
|
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS NN Library
|
|
* Title: arm_convolve_wrapper_s8.c
|
|
* Description: s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
|
|
* cmsis-nn to perform the convolution.
|
|
*
|
|
* $Date: 02. December 2021
|
|
* $Revision: V.1.1.0
|
|
*
|
|
* Target Processor: Cortex-M cores
|
|
*
|
|
* -------------------------------------------------------------------- */
|
|
|
|
#include "arm_nnfunctions.h"
|
|
|
|
/**
|
|
* @ingroup groupNN
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup NNConv
|
|
* @{
|
|
*/
|
|
|
|
/*
|
|
* Convolution layer
|
|
*
|
|
* Refer header file for details.
|
|
*
|
|
*/
|
|
|
|
arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
|
|
const cmsis_nn_conv_params *conv_params,
|
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
|
const cmsis_nn_dims *input_dims,
|
|
const q7_t *input_data,
|
|
const cmsis_nn_dims *filter_dims,
|
|
const q7_t *filter_data,
|
|
const cmsis_nn_dims *bias_dims,
|
|
const int32_t *bias_data,
|
|
const cmsis_nn_dims *output_dims,
|
|
q7_t *output_data)
|
|
{
|
|
if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
|
|
(conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
|
|
(filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
|
{
|
|
return arm_convolve_1x1_s8_fast(ctx,
|
|
conv_params,
|
|
quant_params,
|
|
input_dims,
|
|
input_data,
|
|
filter_dims,
|
|
filter_data,
|
|
bias_dims,
|
|
bias_data,
|
|
output_dims,
|
|
output_data);
|
|
}
|
|
else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
|
|
(input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
|
{
|
|
return arm_convolve_1_x_n_s8(ctx,
|
|
conv_params,
|
|
quant_params,
|
|
input_dims,
|
|
input_data,
|
|
filter_dims,
|
|
filter_data,
|
|
bias_dims,
|
|
bias_data,
|
|
output_dims,
|
|
output_data);
|
|
}
|
|
else
|
|
{
|
|
return arm_convolve_s8(ctx,
|
|
conv_params,
|
|
quant_params,
|
|
input_dims,
|
|
input_data,
|
|
filter_dims,
|
|
filter_data,
|
|
bias_dims,
|
|
bias_data,
|
|
output_dims,
|
|
output_data);
|
|
}
|
|
}
|
|
|
|
int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
|
|
const cmsis_nn_dims *input_dims,
|
|
const cmsis_nn_dims *filter_dims,
|
|
const cmsis_nn_dims *output_dims)
|
|
{
|
|
if ((conv_params->padding.w == 0) && (conv_params->padding.h == 0) && (input_dims->c % 4 == 0) &&
|
|
(conv_params->stride.w == 1) && (conv_params->stride.h == 1) && (filter_dims->w == 1) &&
|
|
(filter_dims->h == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
|
{
|
|
return arm_convolve_1x1_s8_fast_get_buffer_size(input_dims);
|
|
}
|
|
else if ((output_dims->h == 1) && (input_dims->h == 1) && (filter_dims->h == 1) && (output_dims->w % 4 == 0) &&
|
|
(input_dims->n == 1) && (conv_params->dilation.w == 1 && conv_params->dilation.h == 1))
|
|
{
|
|
return arm_convolve_1_x_n_s8_get_buffer_size(input_dims, filter_dims);
|
|
}
|
|
else
|
|
{
|
|
return arm_convolve_s8_get_buffer_size(input_dims, filter_dims);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @} end of NNConv group
|
|
*/
|