242 lines
8.7 KiB
C
242 lines
8.7 KiB
C
/*
|
|
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS NN Library
|
|
* Title: arm_convolve_fast_s16.c
|
|
* Description: Optimized s16 version of convolution.
|
|
*
|
|
* $Date: 12 August 2021
|
|
* $Revision: V.1.1.0
|
|
*
|
|
* Target Processor: Cortex-M cores
|
|
*
|
|
* -------------------------------------------------------------------- */
|
|
|
|
#include "arm_nnfunctions.h"
|
|
#include "arm_nnsupportfunctions.h"
|
|
|
|
/**
|
|
* @ingroup groupNN
|
|
*/
|
|
|
|
/**
|
|
* @addtogroup NNConv
|
|
* @{
|
|
*/
|
|
|
|
/*
|
|
* Basic s16 convolution function.
|
|
*
|
|
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
|
|
* are multiples of 4 or atleast greater than 4.
|
|
*
|
|
*/
|
|
|
|
arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
|
|
const cmsis_nn_conv_params *conv_params,
|
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
|
const cmsis_nn_dims *input_dims,
|
|
const q15_t *input_data,
|
|
const cmsis_nn_dims *filter_dims,
|
|
const q7_t *filter_data,
|
|
const cmsis_nn_dims *bias_dims,
|
|
const int64_t *bias_data,
|
|
const cmsis_nn_dims *output_dims,
|
|
q15_t *output_data)
|
|
{
|
|
(void)bias_dims;
|
|
if (filter_dims->w * filter_dims->h * input_dims->c >= 512)
|
|
{
|
|
return ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
|
|
if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
|
|
{
|
|
return ARM_MATH_ARGUMENT_ERROR;
|
|
}
|
|
q15_t *buffer_a = (q15_t *)ctx->buf;
|
|
|
|
const int32_t input_batches = input_dims->n;
|
|
const int32_t input_x = input_dims->w;
|
|
const int32_t input_y = input_dims->h;
|
|
const int32_t input_ch = input_dims->c;
|
|
const int32_t kernel_x = filter_dims->w;
|
|
const int32_t kernel_y = filter_dims->h;
|
|
const int32_t output_x = output_dims->w;
|
|
const int32_t output_y = output_dims->h;
|
|
const int32_t output_ch = output_dims->c;
|
|
|
|
const int32_t pad_x = conv_params->padding.w;
|
|
const int32_t pad_y = conv_params->padding.h;
|
|
const int32_t stride_x = conv_params->stride.w;
|
|
const int32_t stride_y = conv_params->stride.h;
|
|
|
|
const int16_t out_activation_min = conv_params->activation.min;
|
|
const int16_t out_activation_max = conv_params->activation.max;
|
|
int32_t *output_mult = quant_params->multiplier;
|
|
int32_t *output_shift = quant_params->shift;
|
|
|
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
|
{
|
|
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
|
/* Generate two columns from the input tensor a GEMM computation */
|
|
q15_t *two_column_buf = buffer_a;
|
|
q15_t *out = output_data;
|
|
/* This part implements the im2col function */
|
|
for (int32_t i_out_y = 0; i_out_y < output_y; i_out_y++)
|
|
{
|
|
for (int32_t i_out_x = 0; i_out_x < output_x; i_out_x++)
|
|
{
|
|
for (int32_t i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y;
|
|
i_ker_y++)
|
|
{
|
|
for (int32_t i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
|
|
i_ker_x++)
|
|
{
|
|
if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
|
|
{
|
|
/* Filling 0 for out-of-bound paddings */
|
|
arm_memset_q7((q7_t *)two_column_buf, 0, sizeof(q15_t) * input_ch);
|
|
}
|
|
else
|
|
{
|
|
arm_memcpy_q7((q7_t *)two_column_buf,
|
|
(const q7_t *)(input_data + (i_ker_y * input_x + i_ker_x) * input_ch),
|
|
input_ch * sizeof(q15_t));
|
|
}
|
|
two_column_buf += input_ch;
|
|
}
|
|
}
|
|
/* Computation is filed for every 2 columns */
|
|
if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
|
|
{
|
|
out = arm_nn_mat_mult_kernel_s16(filter_data,
|
|
buffer_a,
|
|
output_ch,
|
|
output_shift,
|
|
output_mult,
|
|
out_activation_min,
|
|
out_activation_max,
|
|
(input_ch * kernel_y * kernel_x),
|
|
bias_data,
|
|
out);
|
|
|
|
/* Counter reset */
|
|
two_column_buf = buffer_a;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Left-over because odd number of output pixels */
|
|
if (two_column_buf != buffer_a)
|
|
{
|
|
const q7_t *ker_a = filter_data;
|
|
int i;
|
|
|
|
for (i = 0; i < output_ch; i++)
|
|
{
|
|
/* Init the accumulator*/
|
|
q31_t sum = 0;
|
|
|
|
/* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
|
|
const q15_t *ip_as_col = buffer_a;
|
|
|
|
/* 4 multiply and accumulates are done in one loop. */
|
|
uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
|
|
|
|
while (col_count)
|
|
{
|
|
q31_t ker_a1, ker_a2;
|
|
q31_t ip_b1, ip_b2;
|
|
|
|
ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
|
|
|
|
ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
|
|
sum = __SMLAD(ker_a1, ip_b1, sum);
|
|
ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
|
|
sum = __SMLAD(ker_a2, ip_b2, sum);
|
|
|
|
col_count--;
|
|
}
|
|
/* Handle left over mac */
|
|
col_count = input_ch * kernel_y * kernel_x & 0x3;
|
|
while (col_count)
|
|
{
|
|
q7_t ker_a1 = *ker_a++;
|
|
q15_t ip_b1 = *ip_as_col++;
|
|
sum += ker_a1 * ip_b1;
|
|
col_count--;
|
|
}
|
|
if (bias_data)
|
|
{
|
|
q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i]);
|
|
q63_t acc_64 = sum + bias_data[i];
|
|
sum = arm_nn_requantize_s64(acc_64, reduced_multiplier, output_shift[i]);
|
|
}
|
|
else
|
|
{
|
|
sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
|
|
}
|
|
sum = MAX(sum, out_activation_min);
|
|
sum = MIN(sum, out_activation_max);
|
|
*out++ = (q15_t)sum;
|
|
}
|
|
}
|
|
#else
|
|
(void)input_data;
|
|
(void)output_data;
|
|
(void)bias_data;
|
|
(void)filter_data;
|
|
(void)buffer_a;
|
|
(void)kernel_x;
|
|
(void)kernel_y;
|
|
(void)pad_x;
|
|
(void)pad_y;
|
|
(void)stride_x;
|
|
(void)stride_y;
|
|
(void)out_activation_min;
|
|
(void)out_activation_max;
|
|
(void)output_mult;
|
|
(void)output_shift;
|
|
return ARM_MATH_ARGUMENT_ERROR;
|
|
#endif
|
|
/* Advance to the next batch */
|
|
input_data += (input_x * input_y * input_ch);
|
|
output_data += (output_x * output_y * output_ch);
|
|
}
|
|
|
|
/* Return to application */
|
|
return ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
|
|
{
|
|
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
|
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
|
|
#else
|
|
(void)input_dims;
|
|
(void)filter_dims;
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* @} end of NNConv group
|
|
*/
|