stm32f407-openocd/Drivers/CMSIS/DSP/Source/FastMathFunctions/arm_vlog_q15.c

265 lines
5.4 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_vlog_q15
* Description: Q15 vector log
*
* $Date: 19 July 2021
* $Revision: V1.10.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/fast_math_functions.h"
#define LOG_Q15_ACCURACY 15
/* Bit to represent the normalization factor
It is Ceiling[Log2[LOG_Q15_ACCURACY]] of the previous value.
The Log2 algorithm is assuming that the value x is
1 <= x < 2.
But input value could be as small a 2^-LOG_Q15_ACCURACY
which would give an integer part of -15.
*/
#define LOG_Q15_INTEGER_PART 4
/* 2.0 in q14 */
#define LOQ_Q15_THRESHOLD (1u << LOG_Q15_ACCURACY)
/* HALF */
#define LOQ_Q15_Q16_HALF LOQ_Q15_THRESHOLD
#define LOQ_Q15_Q14_HALF (LOQ_Q15_Q16_HALF >> 2)
/* 1.0 / Log2[Exp[1]] in q15 */
#define LOG_Q15_INVLOG2EXP 0x58b9u
/* Clay Turner algorithm */
static uint16_t arm_scalar_log_q15(uint16_t src)
{
int i;
int16_t c = __CLZ(src)-16;
int16_t normalization=0;
/* 0.5 in q11 */
uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
/* Will compute y = log2(x) for 1 <= x < 2.0 */
uint16_t x;
/* q11 */
uint16_t y=0;
/* q11 */
int16_t tmp;
/* Normalize and convert to q14 format */
x = src;
if ((c-1) < 0)
{
x = x >> (1-c);
}
else
{
x = x << (c-1);
}
normalization = c;
/* Compute the Log2. Result is in q11 instead of q16
because we know 0 <= y < 1.0 but
we want a result allowing to do a
product on int16 rather than having to go
through int32
*/
for(i = 0; i < LOG_Q15_ACCURACY ; i++)
{
x = (((int32_t)x*x)) >> (LOG_Q15_ACCURACY - 1);
if (x >= LOQ_Q15_THRESHOLD)
{
y += inc ;
x = x >> 1;
}
inc = inc >> 1;
}
/*
Convert the Log2 to Log and apply normalization.
We compute (y - normalisation) * (1 / Log2[e]).
*/
/* q11 */
//tmp = y - ((int32_t)normalization << (LOG_Q15_ACCURACY + 1));
tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
/* q4.11 */
y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
return(y);
}
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
q15x8_t vlogq_q15(q15x8_t src)
{
int i;
int16x8_t c = vclzq_s16(src);
int16x8_t normalization = c;
/* 0.5 in q11 */
uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
/* Will compute y = log2(x) for 1 <= x < 2.0 */
uint16x8_t x;
/* q11 */
uint16x8_t y = vdupq_n_u16(0);
/* q11 */
int16x8_t vtmp;
mve_pred16_t p;
/* Normalize and convert to q14 format */
vtmp = vsubq_n_s16(c,1);
x = vshlq_u16((uint16x8_t)src,vtmp);
/* Compute the Log2. Result is in q11 instead of q16
because we know 0 <= y < 1.0 but
we want a result allowing to do a
product on int16 rather than having to go
through int32
*/
for(i = 0; i < LOG_Q15_ACCURACY ; i++)
{
x = vmulhq_u16(x,x);
x = vshlq_n_u16(x,2);
p = vcmphiq_u16(x,vdupq_n_u16(LOQ_Q15_THRESHOLD));
y = vaddq_m_n_u16(y, y,inc,p);
x = vshrq_m_n_u16(x,x,1,p);
inc = inc >> 1;
}
/*
Convert the Log2 to Log and apply normalization.
We compute (y - normalisation) * (1 / Log2[e]).
*/
/* q11 */
// tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
vtmp = vshlq_n_s16(normalization,LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART);
vtmp = vsubq_s16((int16x8_t)y,vtmp);
/* q4.11 */
// y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
vtmp = vqdmulhq_n_s16(vtmp,LOG_Q15_INVLOG2EXP);
return(vtmp);
}
#endif
/**
@ingroup groupFastMath
*/
/**
@addtogroup vlog
@{
*/
/**
@brief q15 vector of log values.
@param[in] pSrc points to the input vector in q15
@param[out] pDst points to the output vector in q4.11
@param[in] blockSize number of samples in each vector
@return none
*/
void arm_vlog_q15(
const q15_t * pSrc,
q15_t * pDst,
uint32_t blockSize)
{
uint32_t blkCnt; /* loop counters */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
q15x8_t src;
q15x8_t dst;
blkCnt = blockSize >> 3;
while (blkCnt > 0U)
{
src = vld1q(pSrc);
dst = vlogq_q15(src);
vst1q(pDst, dst);
pSrc += 8;
pDst += 8;
/* Decrement loop counter */
blkCnt--;
}
blkCnt = blockSize & 7;
#else
blkCnt = blockSize;
#endif
while (blkCnt > 0U)
{
*pDst++ = arm_scalar_log_q15(*pSrc++);
/* Decrement loop counter */
blkCnt--;
}
}
/**
@} end of vlog group
*/