265 lines
5.4 KiB
C
265 lines
5.4 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_vlog_q15
|
|
* Description: Q15 vector log
|
|
*
|
|
* $Date: 19 July 2021
|
|
* $Revision: V1.10.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
|
|
#include "dsp/fast_math_functions.h"
|
|
|
|
|
|
#define LOG_Q15_ACCURACY 15
|
|
|
|
/* Bit to represent the normalization factor
|
|
It is Ceiling[Log2[LOG_Q15_ACCURACY]] of the previous value.
|
|
The Log2 algorithm is assuming that the value x is
|
|
1 <= x < 2.
|
|
|
|
But input value could be as small a 2^-LOG_Q15_ACCURACY
|
|
which would give an integer part of -15.
|
|
*/
|
|
#define LOG_Q15_INTEGER_PART 4
|
|
|
|
/* 2.0 in q14 */
|
|
#define LOQ_Q15_THRESHOLD (1u << LOG_Q15_ACCURACY)
|
|
|
|
/* HALF */
|
|
#define LOQ_Q15_Q16_HALF LOQ_Q15_THRESHOLD
|
|
#define LOQ_Q15_Q14_HALF (LOQ_Q15_Q16_HALF >> 2)
|
|
|
|
|
|
/* 1.0 / Log2[Exp[1]] in q15 */
|
|
#define LOG_Q15_INVLOG2EXP 0x58b9u
|
|
|
|
|
|
/* Clay Turner algorithm */
|
|
static uint16_t arm_scalar_log_q15(uint16_t src)
|
|
{
|
|
int i;
|
|
|
|
int16_t c = __CLZ(src)-16;
|
|
int16_t normalization=0;
|
|
|
|
/* 0.5 in q11 */
|
|
uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
|
|
|
|
/* Will compute y = log2(x) for 1 <= x < 2.0 */
|
|
uint16_t x;
|
|
|
|
/* q11 */
|
|
uint16_t y=0;
|
|
|
|
/* q11 */
|
|
int16_t tmp;
|
|
|
|
|
|
/* Normalize and convert to q14 format */
|
|
x = src;
|
|
if ((c-1) < 0)
|
|
{
|
|
x = x >> (1-c);
|
|
}
|
|
else
|
|
{
|
|
x = x << (c-1);
|
|
}
|
|
normalization = c;
|
|
|
|
|
|
|
|
/* Compute the Log2. Result is in q11 instead of q16
|
|
because we know 0 <= y < 1.0 but
|
|
we want a result allowing to do a
|
|
product on int16 rather than having to go
|
|
through int32
|
|
*/
|
|
for(i = 0; i < LOG_Q15_ACCURACY ; i++)
|
|
{
|
|
x = (((int32_t)x*x)) >> (LOG_Q15_ACCURACY - 1);
|
|
|
|
if (x >= LOQ_Q15_THRESHOLD)
|
|
{
|
|
y += inc ;
|
|
x = x >> 1;
|
|
}
|
|
inc = inc >> 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Convert the Log2 to Log and apply normalization.
|
|
We compute (y - normalisation) * (1 / Log2[e]).
|
|
|
|
*/
|
|
|
|
/* q11 */
|
|
//tmp = y - ((int32_t)normalization << (LOG_Q15_ACCURACY + 1));
|
|
tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
|
|
|
|
/* q4.11 */
|
|
y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
|
|
|
|
return(y);
|
|
|
|
}
|
|
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
|
|
q15x8_t vlogq_q15(q15x8_t src)
|
|
{
|
|
|
|
int i;
|
|
|
|
int16x8_t c = vclzq_s16(src);
|
|
int16x8_t normalization = c;
|
|
|
|
|
|
/* 0.5 in q11 */
|
|
uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1);
|
|
|
|
/* Will compute y = log2(x) for 1 <= x < 2.0 */
|
|
uint16x8_t x;
|
|
|
|
|
|
/* q11 */
|
|
uint16x8_t y = vdupq_n_u16(0);
|
|
|
|
|
|
/* q11 */
|
|
int16x8_t vtmp;
|
|
|
|
|
|
mve_pred16_t p;
|
|
|
|
/* Normalize and convert to q14 format */
|
|
|
|
|
|
vtmp = vsubq_n_s16(c,1);
|
|
x = vshlq_u16((uint16x8_t)src,vtmp);
|
|
|
|
|
|
/* Compute the Log2. Result is in q11 instead of q16
|
|
because we know 0 <= y < 1.0 but
|
|
we want a result allowing to do a
|
|
product on int16 rather than having to go
|
|
through int32
|
|
*/
|
|
for(i = 0; i < LOG_Q15_ACCURACY ; i++)
|
|
{
|
|
x = vmulhq_u16(x,x);
|
|
x = vshlq_n_u16(x,2);
|
|
|
|
|
|
p = vcmphiq_u16(x,vdupq_n_u16(LOQ_Q15_THRESHOLD));
|
|
y = vaddq_m_n_u16(y, y,inc,p);
|
|
x = vshrq_m_n_u16(x,x,1,p);
|
|
|
|
inc = inc >> 1;
|
|
}
|
|
|
|
|
|
/*
|
|
Convert the Log2 to Log and apply normalization.
|
|
We compute (y - normalisation) * (1 / Log2[e]).
|
|
|
|
*/
|
|
|
|
/* q11 */
|
|
// tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART));
|
|
vtmp = vshlq_n_s16(normalization,LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART);
|
|
vtmp = vsubq_s16((int16x8_t)y,vtmp);
|
|
|
|
|
|
|
|
/* q4.11 */
|
|
// y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15;
|
|
vtmp = vqdmulhq_n_s16(vtmp,LOG_Q15_INVLOG2EXP);
|
|
|
|
return(vtmp);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
@ingroup groupFastMath
|
|
*/
|
|
|
|
/**
|
|
@addtogroup vlog
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief q15 vector of log values.
|
|
@param[in] pSrc points to the input vector in q15
|
|
@param[out] pDst points to the output vector in q4.11
|
|
@param[in] blockSize number of samples in each vector
|
|
@return none
|
|
|
|
*/
|
|
|
|
void arm_vlog_q15(
|
|
const q15_t * pSrc,
|
|
q15_t * pDst,
|
|
uint32_t blockSize)
|
|
{
|
|
uint32_t blkCnt; /* loop counters */
|
|
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
q15x8_t src;
|
|
q15x8_t dst;
|
|
|
|
blkCnt = blockSize >> 3;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
src = vld1q(pSrc);
|
|
dst = vlogq_q15(src);
|
|
vst1q(pDst, dst);
|
|
|
|
pSrc += 8;
|
|
pDst += 8;
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
blkCnt = blockSize & 7;
|
|
#else
|
|
blkCnt = blockSize;
|
|
#endif
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
*pDst++ = arm_scalar_log_q15(*pSrc++);
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
@} end of vlog group
|
|
*/
|