274 lines
7.0 KiB
C
274 lines
7.0 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_cmplx_mag_f32.c
|
|
* Description: Floating-point complex magnitude
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/complex_math_functions.h"
|
|
|
|
/**
|
|
@ingroup groupCmplxMath
|
|
*/
|
|
|
|
/**
|
|
@defgroup cmplx_mag Complex Magnitude
|
|
|
|
Computes the magnitude of the elements of a complex data vector.
|
|
|
|
The <code>pSrc</code> points to the source data and
|
|
<code>pDst</code> points to the where the result should be written.
|
|
<code>numSamples</code> specifies the number of complex samples
|
|
in the input array and the data is stored in an interleaved fashion
|
|
(real, imag, real, imag, ...).
|
|
The input array has a total of <code>2*numSamples</code> values;
|
|
the output array has a total of <code>numSamples</code> values.
|
|
|
|
The underlying algorithm is used:
|
|
|
|
<pre>
|
|
for (n = 0; n < numSamples; n++) {
|
|
pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
|
|
}
|
|
</pre>
|
|
|
|
There are separate functions for floating-point, Q15, and Q31 data types.
|
|
*/
|
|
|
|
/**
|
|
@addtogroup cmplx_mag
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief Floating-point complex magnitude.
|
|
@param[in] pSrc points to input vector
|
|
@param[out] pDst points to output vector
|
|
@param[in] numSamples number of samples in each vector
|
|
@return none
|
|
*/
|
|
|
|
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
#include "arm_vec_math.h"
|
|
#endif
|
|
|
|
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#include "arm_helium_utils.h"
|
|
|
|
|
|
void arm_cmplx_mag_f32(
|
|
const float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t numSamples)
|
|
{
|
|
int32_t blockSize = numSamples; /* loop counters */
|
|
uint32_t blkCnt; /* loop counters */
|
|
f32x4x2_t vecSrc;
|
|
f32x4_t sum;
|
|
float32_t real, imag; /* Temporary variables to hold input values */
|
|
|
|
/* Compute 4 complex samples at a time */
|
|
blkCnt = blockSize >> 2;
|
|
while (blkCnt > 0U)
|
|
{
|
|
q31x4_t newtonStartVec;
|
|
f32x4_t sumHalf, invSqrt;
|
|
|
|
vecSrc = vld2q(pSrc);
|
|
pSrc += 8;
|
|
sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
|
|
sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
|
|
|
|
/*
|
|
* inlined Fast SQRT using inverse SQRT newton-raphson method
|
|
*/
|
|
|
|
/* compute initial value */
|
|
newtonStartVec = vdupq_n_s32(INVSQRT_MAGIC_F32) - vshrq((q31x4_t) sum, 1);
|
|
sumHalf = sum * 0.5f;
|
|
/*
|
|
* compute 3 x iterations
|
|
*
|
|
* The more iterations, the more accuracy.
|
|
* If you need to trade a bit of accuracy for more performance,
|
|
* you can comment out the 3rd use of the macro.
|
|
*/
|
|
INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, (f32x4_t) newtonStartVec);
|
|
INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
|
|
INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
|
|
/*
|
|
* set negative values to 0
|
|
*/
|
|
invSqrt = vdupq_m(invSqrt, 0.0f, vcmpltq(invSqrt, 0.0f));
|
|
/*
|
|
* sqrt(x) = x * invSqrt(x)
|
|
*/
|
|
sum = vmulq(sum, invSqrt);
|
|
vst1q(pDst, sum);
|
|
pDst += 4;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
*/
|
|
blkCnt = blockSize & 3;
|
|
while (blkCnt > 0U)
|
|
{
|
|
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
|
|
/* store result in destination buffer. */
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
}
|
|
|
|
#else
|
|
void arm_cmplx_mag_f32(
|
|
const float32_t * pSrc,
|
|
float32_t * pDst,
|
|
uint32_t numSamples)
|
|
{
|
|
uint32_t blkCnt; /* loop counter */
|
|
float32_t real, imag; /* Temporary variables to hold input values */
|
|
|
|
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
float32x4x2_t vecA;
|
|
float32x4_t vRealA;
|
|
float32x4_t vImagA;
|
|
float32x4_t vMagSqA;
|
|
|
|
float32x4x2_t vecB;
|
|
float32x4_t vRealB;
|
|
float32x4_t vImagB;
|
|
float32x4_t vMagSqB;
|
|
|
|
/* Loop unrolling: Compute 8 outputs at a time */
|
|
blkCnt = numSamples >> 3;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/* out = sqrt((real * real) + (imag * imag)) */
|
|
|
|
vecA = vld2q_f32(pSrc);
|
|
pSrc += 8;
|
|
|
|
vecB = vld2q_f32(pSrc);
|
|
pSrc += 8;
|
|
|
|
vRealA = vmulq_f32(vecA.val[0], vecA.val[0]);
|
|
vImagA = vmulq_f32(vecA.val[1], vecA.val[1]);
|
|
vMagSqA = vaddq_f32(vRealA, vImagA);
|
|
|
|
vRealB = vmulq_f32(vecB.val[0], vecB.val[0]);
|
|
vImagB = vmulq_f32(vecB.val[1], vecB.val[1]);
|
|
vMagSqB = vaddq_f32(vRealB, vImagB);
|
|
|
|
/* Store the result in the destination buffer. */
|
|
vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA));
|
|
pDst += 4;
|
|
|
|
vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB));
|
|
pDst += 4;
|
|
|
|
/* Decrement the loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
blkCnt = numSamples & 7;
|
|
|
|
#else
|
|
|
|
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
/* Loop unrolling: Compute 4 outputs at a time */
|
|
blkCnt = numSamples >> 2U;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
|
|
/* store result in destination buffer. */
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Loop unrolling: Compute remaining outputs */
|
|
blkCnt = numSamples % 0x4U;
|
|
|
|
#else
|
|
|
|
/* Initialize blkCnt with number of samples */
|
|
blkCnt = numSamples;
|
|
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
#endif /* #if defined(ARM_MATH_NEON) */
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
|
|
|
real = *pSrc++;
|
|
imag = *pSrc++;
|
|
|
|
/* store result in destination buffer. */
|
|
arm_sqrt_f32((real * real) + (imag * imag), pDst++);
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
@} end of cmplx_mag group
|
|
*/
|