stm32f407-openocd/Drivers/CMSIS/DAP/Firmware/Source/UART.c

653 lines
17 KiB
C

/*
* Copyright (c) 2021 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 1. March 2021
* $Revision: V1.0.0
*
* Project: CMSIS-DAP Source
* Title: UART.c CMSIS-DAP UART
*
*---------------------------------------------------------------------------*/
#include "DAP_config.h"
#include "DAP.h"
#if (DAP_UART != 0)
#ifdef DAP_FW_V1
#error "UART Communication Port not supported in DAP V1!"
#endif
#include "Driver_USART.h"
#include "cmsis_os2.h"
#include <string.h>
#define UART_RX_BLOCK_SIZE 32U /* Uart Rx Block Size (must be 2^n) */
// USART Driver
#define _USART_Driver_(n) Driver_USART##n
#define USART_Driver_(n) _USART_Driver_(n)
extern ARM_DRIVER_USART USART_Driver_(DAP_UART_DRIVER);
#define pUSART (&USART_Driver_(DAP_UART_DRIVER))
// UART Configuration
#if (DAP_UART_USB_COM_PORT != 0)
static uint8_t UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
#else
static uint8_t UartTransport = DAP_UART_TRANSPORT_NONE;
#endif
// UART Flags
static uint8_t UartConfigured = 0U;
static uint8_t UartReceiveEnabled = 0U;
static uint8_t UartTransmitEnabled = 0U;
static uint8_t UartTransmitActive = 0U;
// UART TX Buffer
static uint8_t UartTxBuf[DAP_UART_TX_BUFFER_SIZE];
static volatile uint32_t UartTxIndexI = 0U;
static volatile uint32_t UartTxIndexO = 0U;
// UART RX Buffer
static uint8_t UartRxBuf[DAP_UART_RX_BUFFER_SIZE];
static volatile uint32_t UartRxIndexI = 0U;
static volatile uint32_t UartRxIndexO = 0U;
// Uart Errors
static volatile uint8_t UartErrorRxDataLost = 0U;
static volatile uint8_t UartErrorFraming = 0U;
static volatile uint8_t UartErrorParity = 0U;
// UART Transmit
static uint32_t UartTxNum = 0U;
// Function prototypes
static uint8_t UART_Init (void);
static void UART_Uninit (void);
static uint8_t UART_Get_Status (void);
static uint8_t UART_Receive_Enable (void);
static uint8_t UART_Transmit_Enable (void);
static void UART_Receive_Disable (void);
static void UART_Transmit_Disable (void);
static void UART_Receive_Flush (void);
static void UART_Transmit_Flush (void);
static void UART_Receive (void);
static void UART_Transmit (void);
// USART Driver Callback function
// event: event mask
static void USART_Callback (uint32_t event) {
if (event & ARM_USART_EVENT_SEND_COMPLETE) {
UartTxIndexO += UartTxNum;
UartTransmitActive = 0U;
UART_Transmit();
}
if (event & ARM_USART_EVENT_RECEIVE_COMPLETE) {
UartRxIndexI += UART_RX_BLOCK_SIZE;
UART_Receive();
}
if (event & ARM_USART_EVENT_RX_OVERFLOW) {
UartErrorRxDataLost = 1U;
}
if (event & ARM_USART_EVENT_RX_FRAMING_ERROR) {
UartErrorFraming = 1U;
}
if (event & ARM_USART_EVENT_RX_PARITY_ERROR) {
UartErrorParity = 1U;
}
}
// Init UART
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Init (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
UartConfigured = 0U;
UartReceiveEnabled = 0U;
UartTransmitEnabled = 0U;
UartTransmitActive = 0U;
UartErrorRxDataLost = 0U;
UartErrorFraming = 0U;
UartErrorParity = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartRxIndexI = 0U;
UartRxIndexO = 0U;
UartTxNum = 0U;
status = pUSART->Initialize(USART_Callback);
if (status == ARM_DRIVER_OK) {
status = pUSART->PowerControl(ARM_POWER_FULL);
}
if (status == ARM_DRIVER_OK) {
ret = DAP_OK;
}
return (ret);
}
// Un-Init UART
static void UART_Uninit (void) {
UartConfigured = 0U;
pUSART->PowerControl(ARM_POWER_OFF);
pUSART->Uninitialize();
}
// Get UART Status
// return: status
static uint8_t UART_Get_Status (void) {
uint8_t status = 0U;
if (UartReceiveEnabled != 0U) {
status |= DAP_UART_STATUS_RX_ENABLED;
}
if (UartErrorRxDataLost != 0U) {
UartErrorRxDataLost = 0U;
status |= DAP_UART_STATUS_RX_DATA_LOST;
}
if (UartErrorFraming != 0U) {
UartErrorFraming = 0U;
status |= DAP_UART_STATUS_FRAMING_ERROR;
}
if (UartErrorParity != 0U) {
UartErrorParity = 0U;
status |= DAP_UART_STATUS_PARITY_ERROR;
}
if (UartTransmitEnabled != 0U) {
status |= DAP_UART_STATUS_TX_ENABLED;
}
return (status);
}
// Enable UART Receive
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Receive_Enable (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
if (UartReceiveEnabled == 0U) {
// Flush Buffers
UartRxIndexI = 0U;
UartRxIndexO = 0U;
UART_Receive();
status = pUSART->Control(ARM_USART_CONTROL_RX, 1U);
if (status == ARM_DRIVER_OK) {
UartReceiveEnabled = 1U;
ret = DAP_OK;
}
} else {
ret = DAP_OK;
}
return (ret);
}
// Enable UART Transmit
// return: DAP_OK or DAP_ERROR
static uint8_t UART_Transmit_Enable (void) {
int32_t status;
uint8_t ret = DAP_ERROR;
if (UartTransmitEnabled == 0U) {
// Flush Buffers
UartTransmitActive = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartTxNum = 0U;
status = pUSART->Control(ARM_USART_CONTROL_TX, 1U);
if (status == ARM_DRIVER_OK) {
UartTransmitEnabled = 1U;
ret = DAP_OK;
}
} else {
ret = DAP_OK;
}
return (ret);
}
// Disable UART Receive
static void UART_Receive_Disable (void) {
if (UartReceiveEnabled != 0U) {
pUSART->Control(ARM_USART_CONTROL_RX, 0U);
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
UartReceiveEnabled = 0U;
}
}
// Disable UART Transmit
static void UART_Transmit_Disable (void) {
if (UartTransmitEnabled != 0U) {
pUSART->Control(ARM_USART_ABORT_SEND, 0U);
pUSART->Control(ARM_USART_CONTROL_TX, 0U);
UartTransmitActive = 0U;
UartTransmitEnabled = 0U;
}
}
// Flush UART Receive buffer
static void UART_Receive_Flush (void) {
pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U);
UartRxIndexI = 0U;
UartRxIndexO = 0U;
if (UartReceiveEnabled != 0U) {
UART_Receive();
}
}
// Flush UART Transmit buffer
static void UART_Transmit_Flush (void) {
pUSART->Control(ARM_USART_ABORT_SEND, 0U);
UartTransmitActive = 0U;
UartTxIndexI = 0U;
UartTxIndexO = 0U;
UartTxNum = 0U;
}
// Receive data from target via UART
static void UART_Receive (void) {
uint32_t index;
index = UartRxIndexI & (DAP_UART_RX_BUFFER_SIZE - 1U);
pUSART->Receive(&UartRxBuf[index], UART_RX_BLOCK_SIZE);
}
// Transmit available data to target via UART
static void UART_Transmit (void) {
uint32_t count;
uint32_t index;
count = UartTxIndexI - UartTxIndexO;
index = UartTxIndexO & (DAP_UART_TX_BUFFER_SIZE - 1U);
if (count != 0U) {
if ((index + count) <= DAP_UART_TX_BUFFER_SIZE) {
UartTxNum = count;
} else {
UartTxNum = DAP_UART_TX_BUFFER_SIZE - index;
}
UartTransmitActive = 1U;
pUSART->Send(&UartTxBuf[index], UartTxNum);
}
}
// Process UART Transport command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Transport (const uint8_t *request, uint8_t *response) {
uint8_t transport;
uint8_t ret = DAP_ERROR;
transport = *request;
switch (transport) {
case DAP_UART_TRANSPORT_NONE:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
ret = DAP_OK;
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
#if (DAP_UART_USB_COM_PORT != 0)
USB_COM_PORT_Activate(0U);
UartTransport = DAP_UART_TRANSPORT_NONE;
ret = DAP_OK;
#endif
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
UART_Receive_Disable();
UART_Transmit_Disable();
UART_Uninit();
UartTransport = DAP_UART_TRANSPORT_NONE;
ret= DAP_OK;
break;
}
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
#if (DAP_UART_USB_COM_PORT != 0)
if (USB_COM_PORT_Activate(1U) == 0U) {
UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
ret = DAP_OK;
}
#endif
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
ret = DAP_OK;
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
UART_Receive_Disable();
UART_Transmit_Disable();
UART_Uninit();
UartTransport = DAP_UART_TRANSPORT_NONE;
#if (DAP_UART_USB_COM_PORT != 0)
if (USB_COM_PORT_Activate(1U) == 0U) {
UartTransport = DAP_UART_TRANSPORT_USB_COM_PORT;
ret = DAP_OK;
}
#endif
break;
}
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
switch (UartTransport) {
case DAP_UART_TRANSPORT_NONE:
ret = UART_Init();
if (ret == DAP_OK) {
UartTransport = DAP_UART_TRANSPORT_DAP_COMMAND;
}
break;
case DAP_UART_TRANSPORT_USB_COM_PORT:
#if (DAP_UART_USB_COM_PORT != 0)
USB_COM_PORT_Activate(0U);
UartTransport = DAP_UART_TRANSPORT_NONE;
#endif
ret = UART_Init();
if (ret == DAP_OK) {
UartTransport = DAP_UART_TRANSPORT_DAP_COMMAND;
}
break;
case DAP_UART_TRANSPORT_DAP_COMMAND:
ret = DAP_OK;
break;
}
break;
default:
break;
}
*response = ret;
return ((1U << 16) | 1U);
}
// Process UART Configure command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Configure (const uint8_t *request, uint8_t *response) {
uint8_t control, status;
uint32_t baudrate;
int32_t result;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
status = DAP_UART_CFG_ERROR_DATA_BITS |
DAP_UART_CFG_ERROR_PARITY |
DAP_UART_CFG_ERROR_STOP_BITS;
baudrate = 0U; // baudrate error
} else {
status = 0U;
control = *request;
baudrate = (uint32_t)(*(request+1) << 0) |
(uint32_t)(*(request+2) << 8) |
(uint32_t)(*(request+3) << 16) |
(uint32_t)(*(request+4) << 24);
result = pUSART->Control(control |
ARM_USART_MODE_ASYNCHRONOUS |
ARM_USART_FLOW_CONTROL_NONE,
baudrate);
if (result == ARM_DRIVER_OK) {
UartConfigured = 1U;
} else {
UartConfigured = 0U;
switch (result) {
case ARM_USART_ERROR_BAUDRATE:
status = 0U;
baudrate = 0U;
break;
case ARM_USART_ERROR_DATA_BITS:
status = DAP_UART_CFG_ERROR_DATA_BITS;
break;
case ARM_USART_ERROR_PARITY:
status = DAP_UART_CFG_ERROR_PARITY;
break;
case ARM_USART_ERROR_STOP_BITS:
status = DAP_UART_CFG_ERROR_STOP_BITS;
break;
default:
status = DAP_UART_CFG_ERROR_DATA_BITS |
DAP_UART_CFG_ERROR_PARITY |
DAP_UART_CFG_ERROR_STOP_BITS;
baudrate = 0U;
break;
}
}
}
*response++ = status;
*response++ = (uint8_t)(baudrate >> 0);
*response++ = (uint8_t)(baudrate >> 8);
*response++ = (uint8_t)(baudrate >> 16);
*response = (uint8_t)(baudrate >> 24);
return ((5U << 16) | 5U);
}
// Process UART Control command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Control (const uint8_t *request, uint8_t *response) {
uint8_t control;
uint8_t result;
uint8_t ret = DAP_OK;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
ret = DAP_ERROR;
} else {
control = *request;
if ((control & DAP_UART_CONTROL_RX_DISABLE) != 0U) {
// Receive disable
UART_Receive_Disable();
} else if ((control & DAP_UART_CONTROL_RX_ENABLE) != 0U) {
// Receive enable
if (UartConfigured != 0U) {
result = UART_Receive_Enable();
if (result != DAP_OK) {
ret = DAP_ERROR;
}
} else {
ret = DAP_ERROR;
}
}
if ((control & DAP_UART_CONTROL_RX_BUF_FLUSH) != 0U) {
UART_Receive_Flush();
}
if ((control & DAP_UART_CONTROL_TX_DISABLE) != 0U) {
// Transmit disable
UART_Transmit_Disable();
} else if ((control & DAP_UART_CONTROL_TX_ENABLE) != 0U) {
// Transmit enable
if (UartConfigured != 0U) {
result = UART_Transmit_Enable();
if (result != DAP_OK) {
ret = DAP_ERROR;
}
} else {
ret = DAP_ERROR;
}
}
if ((control & DAP_UART_CONTROL_TX_BUF_FLUSH) != 0U) {
UART_Transmit_Flush();
}
}
*response = ret;
return ((1U << 16) | 1U);
}
// Process UART Status command and prepare response
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Status (uint8_t *response) {
uint32_t rx_cnt, tx_cnt;
uint32_t cnt;
uint8_t status;
if ((UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) ||
(UartConfigured == 0U)) {
rx_cnt = 0U;
tx_cnt = 0U;
status = 0U;
} else {
rx_cnt = UartRxIndexI - UartRxIndexO;
rx_cnt += pUSART->GetRxCount();
if (rx_cnt > (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2))) {
// Overflow
UartErrorRxDataLost = 1U;
rx_cnt = (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2));
UartRxIndexO = UartRxIndexI - rx_cnt;
}
tx_cnt = UartTxIndexI - UartTxIndexO;
cnt = pUSART->GetTxCount();
if (UartTransmitActive != 0U) {
tx_cnt -= cnt;
}
status = UART_Get_Status();
}
*response++ = status;
*response++ = (uint8_t)(rx_cnt >> 0);
*response++ = (uint8_t)(rx_cnt >> 8);
*response++ = (uint8_t)(rx_cnt >> 16);
*response++ = (uint8_t)(rx_cnt >> 24);
*response++ = (uint8_t)(tx_cnt >> 0);
*response++ = (uint8_t)(tx_cnt >> 8);
*response++ = (uint8_t)(tx_cnt >> 16);
*response = (uint8_t)(tx_cnt >> 24);
return ((0U << 16) | 9U);
}
// Process UART Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t UART_Transfer (const uint8_t *request, uint8_t *response) {
uint32_t rx_cnt, tx_cnt;
uint32_t rx_num, tx_num;
uint8_t *rx_data;
const
uint8_t *tx_data;
uint32_t num;
uint32_t index;
uint8_t status;
if (UartTransport != DAP_UART_TRANSPORT_DAP_COMMAND) {
status = 0U;
rx_cnt = 0U;
tx_cnt = 0U;
} else {
// RX Data
rx_cnt = ((uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8));
if (rx_cnt > (DAP_PACKET_SIZE - 6U)) {
rx_cnt = (DAP_PACKET_SIZE - 6U);
}
rx_num = UartRxIndexI - UartRxIndexO;
rx_num += pUSART->GetRxCount();
if (rx_num > (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2))) {
// Overflow
UartErrorRxDataLost = 1U;
rx_num = (DAP_UART_RX_BUFFER_SIZE - (UART_RX_BLOCK_SIZE*2));
UartRxIndexO = UartRxIndexI - rx_num;
}
if (rx_cnt > rx_num) {
rx_cnt = rx_num;
}
rx_data = (response+5);
index = UartRxIndexO & (DAP_UART_RX_BUFFER_SIZE - 1U);
if ((index + rx_cnt) <= DAP_UART_RX_BUFFER_SIZE) {
memcpy( rx_data, &UartRxBuf[index], rx_cnt);
} else {
num = DAP_UART_RX_BUFFER_SIZE - index;
memcpy( rx_data, &UartRxBuf[index], num);
memcpy(&rx_data[num], &UartRxBuf[0], rx_cnt - num);
}
UartRxIndexO += rx_cnt;
// TX Data
tx_cnt = ((uint32_t)(*(request+2) << 0) |
(uint32_t)(*(request+3) << 8));
tx_data = (request+4);
if (tx_cnt > (DAP_PACKET_SIZE - 5U)) {
tx_cnt = (DAP_PACKET_SIZE - 5U);
}
tx_num = UartTxIndexI - UartTxIndexO;
num = pUSART->GetTxCount();
if (UartTransmitActive != 0U) {
tx_num -= num;
}
if (tx_cnt > (DAP_UART_TX_BUFFER_SIZE - tx_num)) {
tx_cnt = (DAP_UART_TX_BUFFER_SIZE - tx_num);
}
index = UartTxIndexI & (DAP_UART_TX_BUFFER_SIZE - 1U);
if ((index + tx_cnt) <= DAP_UART_TX_BUFFER_SIZE) {
memcpy(&UartTxBuf[index], tx_data, tx_cnt);
} else {
num = DAP_UART_TX_BUFFER_SIZE - index;
memcpy(&UartTxBuf[index], tx_data, num);
memcpy(&UartTxBuf[0], &tx_data[num], tx_cnt - num);
}
UartTxIndexI += tx_cnt;
if (UartTransmitActive == 0U) {
UART_Transmit();
}
status = UART_Get_Status();
}
*response++ = status;
*response++ = (uint8_t)(tx_cnt >> 0);
*response++ = (uint8_t)(tx_cnt >> 8);
*response++ = (uint8_t)(rx_cnt >> 0);
*response = (uint8_t)(rx_cnt >> 8);
return (((4U + tx_cnt) << 16) | (5U + rx_cnt));
}
#endif /* DAP_UART */