/* * Copyright (C) 2010-2022 Arm Limited or its affiliates. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_convolve_s16.c * Description: s16 version of convolution using symmetric quantization. * * $Date: January 13, 2022 * $Revision: V.1.1.0 * * Target Processor: Cortex-M cores * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" #include "arm_nnsupportfunctions.h" /** * @ingroup groupNN */ /** * @addtogroup NNConv * @{ */ /* * Basic s16 convolution function. * * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels * are multiples of 4 or atleast greater than 4. * */ arm_status arm_convolve_s16(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data) { (void)bias_dims; (void)ctx; const int32_t input_batches = input_dims->n; const int32_t input_x = input_dims->w; const int32_t input_y = input_dims->h; const int32_t input_ch = input_dims->c; const int32_t kernel_x = filter_dims->w; const int32_t kernel_y = filter_dims->h; const int32_t output_x = output_dims->w; const int32_t output_y = output_dims->h; const int32_t output_ch = output_dims->c; const int32_t pad_x = conv_params->padding.w; const int32_t pad_y = conv_params->padding.h; const int32_t stride_x = conv_params->stride.w; const int32_t stride_y = conv_params->stride.h; const int32_t dilation_x = conv_params->dilation.w; const int32_t dilation_y = conv_params->dilation.h; const int32_t out_activation_min = conv_params->activation.min; const int32_t out_activation_max = conv_params->activation.max; int32_t *output_mult = quant_params->multiplier; int32_t *output_shift = quant_params->shift; for (int i_batch = 0; i_batch < input_batches; i_batch++) { /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ for (int32_t i_out_ch = 0; i_out_ch < output_ch; i_out_ch++) { const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i_out_ch]); for (int32_t base_idx_y = -pad_y, i_out_y = 0; i_out_y < output_y; base_idx_y += stride_y, i_out_y++) { for (int32_t base_idx_x = -pad_x, i_out_x = 0; i_out_x < output_x; base_idx_x += stride_x, i_out_x++) { int64_t conv_out_acc = 0; const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y; const int32_t ker_y_start = MAX(0, start_y_max); const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x; const int32_t ker_x_start = MAX(0, start_x_max); const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y; const int32_t ker_y_end = MIN(kernel_y, end_min_y); const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x; const int32_t ker_x_end = MIN(kernel_x, end_min_x); for (int32_t i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++) { for (int32_t i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++) { const int32_t in_row = base_idx_y + dilation_y * i_ker_y; const int32_t in_col = base_idx_x + dilation_x * i_ker_x; for (int32_t i_input_ch = 0; i_input_ch < input_ch; i_input_ch++) { conv_out_acc += input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] * filter_data[i_out_ch * input_ch * kernel_y * kernel_x + (i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch]; } } } if (bias_data) { conv_out_acc += bias_data[i_out_ch]; } int32_t conv_out = arm_nn_requantize_s64(conv_out_acc, reduced_multiplier, output_shift[i_out_ch]); conv_out = MAX(conv_out, out_activation_min); conv_out = MIN(conv_out, out_activation_max); output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int16_t)conv_out; } } } /* Advance to the next batch */ input_data += (input_x * input_y * input_ch); output_data += (output_x * output_y * output_ch); } /* Return to application */ return ARM_MATH_SUCCESS; } int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims) { (void)input_dims; (void)filter_dims; return 0; } /** * @} end of NNConv group */