/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_logsumexp_f32.c * Description: LogSumExp * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/statistics_functions.h" #include #include /** * @addtogroup LogSumExp * @{ */ /** * @brief Computation of the LogSumExp * * In probabilistic computations, the dynamic of the probability values can be very * wide because they come from gaussian functions. * To avoid underflow and overflow issues, the values are represented by their log. * In this representation, multiplying the original exp values is easy : their logs are added. * But adding the original exp values is requiring some special handling and it is the * goal of the LogSumExp function. * * If the values are x1...xn, the function is computing: * * ln(exp(x1) + ... + exp(xn)) and the computation is done in such a way that * rounding issues are minimised. * * The max xm of the values is extracted and the function is computing: * xm + ln(exp(x1 - xm) + ... + exp(xn - xm)) * * @param[in] *in Pointer to an array of input values. * @param[in] blockSize Number of samples in the input array. * @return LogSumExp * */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" #include "arm_vec_math.h" float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize) { float32_t maxVal; const float32_t *pIn; int32_t blkCnt; float32_t accum=0.0f; float32_t tmp; arm_max_no_idx_f32((float32_t *) in, blockSize, &maxVal); blkCnt = blockSize; pIn = in; f32x4_t vSum = vdupq_n_f32(0.0f); blkCnt = blockSize >> 2; while(blkCnt > 0) { f32x4_t vecIn = vld1q(pIn); f32x4_t vecExp; vecExp = vexpq_f32(vsubq_n_f32(vecIn, maxVal)); vSum = vaddq_f32(vSum, vecExp); /* * Decrement the blockSize loop counter * Advance vector source and destination pointers */ pIn += 4; blkCnt --; } /* sum + log */ accum = vecAddAcrossF32Mve(vSum); blkCnt = blockSize & 0x3; while(blkCnt > 0) { tmp = *pIn++; accum += expf(tmp - maxVal); blkCnt--; } accum = maxVal + log(accum); return (accum); } #else #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) #include "NEMath.h" float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize) { float32_t maxVal; float32_t tmp; float32x4_t tmpV, tmpVb; float32x4_t maxValV; uint32x4_t idxV; float32x4_t accumV; float32x2_t accumV2; const float32_t *pIn; uint32_t blkCnt; float32_t accum; pIn = in; blkCnt = blockSize; if (blockSize <= 3) { maxVal = *pIn++; blkCnt--; while(blkCnt > 0) { tmp = *pIn++; if (tmp > maxVal) { maxVal = tmp; } blkCnt--; } } else { maxValV = vld1q_f32(pIn); pIn += 4; blkCnt = (blockSize - 4) >> 2; while(blkCnt > 0) { tmpVb = vld1q_f32(pIn); pIn += 4; idxV = vcgtq_f32(tmpVb, maxValV); maxValV = vbslq_f32(idxV, tmpVb, maxValV ); blkCnt--; } accumV2 = vpmax_f32(vget_low_f32(maxValV),vget_high_f32(maxValV)); accumV2 = vpmax_f32(accumV2,accumV2); maxVal = vget_lane_f32(accumV2, 0) ; blkCnt = (blockSize - 4) & 3; while(blkCnt > 0) { tmp = *pIn++; if (tmp > maxVal) { maxVal = tmp; } blkCnt--; } } maxValV = vdupq_n_f32(maxVal); pIn = in; accum = 0; accumV = vdupq_n_f32(0.0f); blkCnt = blockSize >> 2; while(blkCnt > 0) { tmpV = vld1q_f32(pIn); pIn += 4; tmpV = vsubq_f32(tmpV, maxValV); tmpV = vexpq_f32(tmpV); accumV = vaddq_f32(accumV, tmpV); blkCnt--; } accumV2 = vpadd_f32(vget_low_f32(accumV),vget_high_f32(accumV)); accum = vget_lane_f32(accumV2, 0) + vget_lane_f32(accumV2, 1); blkCnt = blockSize & 0x3; while(blkCnt > 0) { tmp = *pIn++; accum += expf(tmp - maxVal); blkCnt--; } accum = maxVal + logf(accum); return(accum); } #else float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize) { float32_t maxVal; float32_t tmp; const float32_t *pIn; uint32_t blkCnt; float32_t accum; pIn = in; blkCnt = blockSize; maxVal = *pIn++; blkCnt--; while(blkCnt > 0) { tmp = *pIn++; if (tmp > maxVal) { maxVal = tmp; } blkCnt--; } blkCnt = blockSize; pIn = in; accum = 0; while(blkCnt > 0) { tmp = *pIn++; accum += expf(tmp - maxVal); blkCnt--; } accum = maxVal + logf(accum); return(accum); } #endif #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** * @} end of LogSumExp group */