/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_rotation2quaternion_f32.c * Description: Floating-point rotation to quaternion conversion * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/quaternion_math_functions.h" #include #define RI(x,y) r[(3*(x) + (y))] /** @ingroup QuatConv */ /** @defgroup RotQuat Rotation to Quaternion Conversions from rotation to quaternion. */ /** @addtogroup RotQuat @{ */ /** * @brief Conversion of a rotation matrix to an equivalent quaternion. * @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order) * @param[out] pOutputQuaternions points to an array quaternions * @param[in] nbQuaternions number of quaternions in the array * @return none. * * q and -q are representing the same rotation. This ambiguity must be taken into * account when using the output of this function. * */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" #define R00 vgetq_lane(q1,0) #define R01 vgetq_lane(q1,1) #define R02 vgetq_lane(q1,2) #define R10 vgetq_lane(q1,3) #define R11 vgetq_lane(q2,0) #define R12 vgetq_lane(q2,1) #define R20 vgetq_lane(q2,2) #define R21 vgetq_lane(q2,3) #define R22 ro22 void arm_rotation2quaternion_f32(const float32_t *pInputRotations, float32_t *pOutputQuaternions, uint32_t nbQuaternions) { float32_t ro22, trace; f32x4_t q1,q2, q; float32_t doubler; float32_t s; q = vdupq_n_f32(0.0f); for(uint32_t nb=0; nb < nbQuaternions; nb++) { q1 = vld1q(pInputRotations); pInputRotations += 4; q2 = vld1q(pInputRotations); pInputRotations += 4; ro22 = *pInputRotations++; trace = R00 + R11 + R22; if (trace > 0) { (void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw doubler = 2.0f*doubler; s = 1.0f / doubler; q1 = vmulq_n_f32(q1,s); q2 = vmulq_n_f32(q2,s); q[0] = 0.25f * doubler; q[1] = R21 - R12; q[2] = R02 - R20; q[3] = R10 - R01; } else if ((R00 > R11) && (R00 > R22) ) { (void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx doubler = 2.0f*doubler; s = 1.0f / doubler; q1 = vmulq_n_f32(q1,s); q2 = vmulq_n_f32(q2,s); q[0] = R21 - R12; q[1] = 0.25f * doubler; q[2] = R01 + R10; q[3] = R02 + R20; } else if (R11 > R22) { (void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy doubler = 2.0f*doubler; s = 1.0f / doubler; q1 = vmulq_n_f32(q1,s); q2 = vmulq_n_f32(q2,s); q[0] = R02 - R20; q[1] = R01 + R10; q[2] = 0.25f * doubler; q[3] = R12 + R21; } else { (void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz doubler = 2.0f*doubler; s = 1.0f / doubler; q1 = vmulq_n_f32(q1,s); q2 = vmulq_n_f32(q2,s); q[0] = R10 - R01; q[1] = R02 + R20; q[2] = R12 + R21; q[3] = 0.25f * doubler; } vst1q(pOutputQuaternions, q); pOutputQuaternions += 4; } } #else void arm_rotation2quaternion_f32(const float32_t *pInputRotations, float32_t *pOutputQuaternions, uint32_t nbQuaternions) { uint32_t nb; for(nb=0; nb < nbQuaternions; nb++) { const float32_t *r=&pInputRotations[nb*9]; float32_t *q=&pOutputQuaternions[nb*4]; float32_t trace = RI(0,0) + RI(1,1) + RI(2,2); float32_t doubler; float32_t s; if (trace > 0.0f) { doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw s = 1.0f / doubler; q[0] = 0.25f * doubler; q[1] = (RI(2,1) - RI(1,2)) * s; q[2] = (RI(0,2) - RI(2,0)) * s; q[3] = (RI(1,0) - RI(0,1)) * s; } else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) ) { doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx s = 1.0f / doubler; q[0] = (RI(2,1) - RI(1,2)) * s; q[1] = 0.25f * doubler; q[2] = (RI(0,1) + RI(1,0)) * s; q[3] = (RI(0,2) + RI(2,0)) * s; } else if (RI(1,1) > RI(2,2)) { doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy s = 1.0f / doubler; q[0] = (RI(0,2) - RI(2,0)) * s; q[1] = (RI(0,1) + RI(1,0)) * s; q[2] = 0.25f * doubler; q[3] = (RI(1,2) + RI(2,1)) * s; } else { doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz s = 1.0f / doubler; q[0] = (RI(1,0) - RI(0,1)) * s; q[1] = (RI(0,2) + RI(2,0)) * s; q[2] = (RI(1,2) + RI(2,1)) * s; q[3] = 0.25f * doubler; } } } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of RotQuat group */