/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_trans_f32.c * Description: Floating-point matrix transpose * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @defgroup MatrixTrans Matrix Transpose Tranposes a matrix. Transposing an M x N matrix flips it around the center diagonal and results in an N x M matrix. \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix" */ /** @addtogroup MatrixTrans @{ */ /** @brief Floating-point matrix transpose. @param[in] pSrc points to input matrix @param[out] pDst points to output matrix @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst) { arm_status status; /* status of matrix transpose */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { if (pDst->numRows == pDst->numCols) { if (pDst->numCols == 2) return arm_mat_trans_32bit_2x2_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData); if (pDst->numCols == 3) return arm_mat_trans_32bit_3x3_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData); if (pDst->numCols == 4) return arm_mat_trans_32bit_4x4_mve((uint32_t *)pSrc->pData, (uint32_t *)pDst->pData); } arm_mat_trans_32bit_generic_mve(pSrc->numRows, pSrc->numCols, (uint32_t *)pSrc->pData, (uint32_t *)pDst->pData); /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else #if defined(ARM_MATH_NEON) arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ float32_t *px; /* Temporary output data matrix pointer */ uint16_t nRows = pSrc->numRows; /* number of rows */ uint16_t nColumns = pSrc->numCols; /* number of columns */ uint16_t blkCnt, rowCnt, i = 0U, row = nRows; /* loop counters */ arm_status status; /* status of matrix transpose */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Matrix transpose by exchanging the rows with columns */ /* Row loop */ rowCnt = row >> 2; while (rowCnt > 0U) { float32x4_t row0V,row1V,row2V,row3V; float32x4x2_t ra0,ra1,rb0,rb1; blkCnt = nColumns >> 2; /* The pointer px is set to starting address of the column being processed */ px = pOut + i; /* Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) /* Column loop */ { row0V = vld1q_f32(pIn); row1V = vld1q_f32(pIn + 1 * nColumns); row2V = vld1q_f32(pIn + 2 * nColumns); row3V = vld1q_f32(pIn + 3 * nColumns); pIn += 4; ra0 = vzipq_f32(row0V,row2V); ra1 = vzipq_f32(row1V,row3V); rb0 = vzipq_f32(ra0.val[0],ra1.val[0]); rb1 = vzipq_f32(ra0.val[1],ra1.val[1]); vst1q_f32(px,rb0.val[0]); px += nRows; vst1q_f32(px,rb0.val[1]); px += nRows; vst1q_f32(px,rb1.val[0]); px += nRows; vst1q_f32(px,rb1.val[1]); px += nRows; /* Decrement the column loop counter */ blkCnt--; } /* Perform matrix transpose for last 3 samples here. */ blkCnt = nColumns % 0x4U; while (blkCnt > 0U) { /* Read and store the input element in the destination */ *px++ = *pIn; *px++ = *(pIn + 1 * nColumns); *px++ = *(pIn + 2 * nColumns); *px++ = *(pIn + 3 * nColumns); px += (nRows - 4); pIn++; /* Decrement the column loop counter */ blkCnt--; } i += 4; pIn += 3 * nColumns; /* Decrement the row loop counter */ rowCnt--; } /* Row loop end */ rowCnt = row & 3; while (rowCnt > 0U) { blkCnt = nColumns ; /* The pointer px is set to starting address of the column being processed */ px = pOut + i; while (blkCnt > 0U) { /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Decrement the column loop counter */ blkCnt--; } i++; rowCnt -- ; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ float32_t *px; /* Temporary output data matrix pointer */ uint16_t nRows = pSrc->numRows; /* number of rows */ uint16_t nCols = pSrc->numCols; /* number of columns */ uint32_t col, row = nRows, i = 0U; /* Loop counters */ arm_status status; /* status of matrix transpose */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Matrix transpose by exchanging the rows with columns */ /* row loop */ do { /* Pointer px is set to starting address of column being processed */ px = pOut + i; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ col = nCols >> 2U; while (col > 0U) /* column loop */ { /* Read and store input element in destination */ *px = *pIn++; /* Update pointer px to point to next row of transposed matrix */ px += nRows; *px = *pIn++; px += nRows; *px = *pIn++; px += nRows; *px = *pIn++; px += nRows; /* Decrement column loop counter */ col--; } /* Loop unrolling: Compute remaining outputs */ col = nCols % 0x4U; #else /* Initialize col with number of samples */ col = nCols; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (col > 0U) { /* Read and store input element in destination */ *px = *pIn++; /* Update pointer px to point to next row of transposed matrix */ px += nRows; /* Decrement column loop counter */ col--; } i++; /* Decrement row loop counter */ row--; } while (row > 0U); /* row loop end */ /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #if defined(ARM_MATH_NEON) */ #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** * @} end of MatrixTrans group */