/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_scale_q15.c * Description: Multiplies a Q15 matrix by a scalar * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @addtogroup MatrixScale @{ */ /** @brief Q15 matrix scaling. @param[in] pSrc points to input matrix @param[in] scaleFract fractional portion of the scale factor @param[in] shift number of bits to shift the result by @param[out] pDst points to output matrix structure @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed @par Scaling and Overflow Behavior The input data *pSrc and scaleFract are in 1.15 format. These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. */ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) arm_status arm_mat_scale_q15( const arm_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, arm_matrix_instance_q15 * pDst) { arm_status status; /* Status of matrix scaling */ q15_t *pIn = pSrc->pData; /* input data matrix pointer */ q15_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ q15x8_t vecIn, vecOut; q15_t const *pInVec; int32_t totShift = shift + 1; /* shift to apply after scaling */ pInVec = (q15_t const *) pIn; #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* * Total number of samples in the input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; blkCnt = numSamples >> 3; while (blkCnt > 0U) { /* * C(m,n) = A(m,n) * scale * Scaling and results are stored in the destination buffer. */ vecIn = vld1q(pInVec); pInVec += 8; /* multiply input with scaler value */ vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract)); /* apply shifting */ vecOut = vqshlq_r(vecOut, totShift); vst1q(pOut, vecOut); pOut += 8; /* * Decrement the blockSize loop counter */ blkCnt--; } /* * tail * (will be merged thru tail predication) */ blkCnt = numSamples & 7; if (blkCnt > 0U) { mve_pred16_t p0 = vctp16q(blkCnt); vecIn = vld1q(pInVec); pInVec += 8; vecOut = vmulhq(vecIn, vdupq_n_s16(scaleFract)); vecOut = vqshlq_r(vecOut, totShift); vstrhq_p(pOut, vecOut, p0); } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_scale_q15( const arm_matrix_instance_q15 * pSrc, q15_t scaleFract, int32_t shift, arm_matrix_instance_q15 * pDst) { q15_t *pIn = pSrc->pData; /* Input data matrix pointer */ q15_t *pOut = pDst->pData; /* Output data matrix pointer */ uint32_t numSamples; /* Total number of elements in the matrix */ uint32_t blkCnt; /* Loop counter */ arm_status status; /* Status of matrix scaling */ int32_t kShift = 15 - shift; /* Total shift to apply after scaling */ #if defined (ARM_MATH_LOOPUNROLL) && defined (ARM_MATH_DSP) q31_t inA1, inA2; q31_t out1, out2, out3, out4; /* Temporary output variables */ q15_t in1, in2, in3, in4; /* Temporary input variables */ #endif #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in input matrix */ numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) * k */ #if defined (ARM_MATH_DSP) /* read 2 times 2 samples at a time from source */ inA1 = read_q15x2_ia (&pIn); inA2 = read_q15x2_ia (&pIn); /* Scale inputs and store result in temporary variables * in single cycle by packing the outputs */ out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); out2 = (q31_t) ((q15_t) (inA1 ) * scaleFract); out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); out4 = (q31_t) ((q15_t) (inA2 ) * scaleFract); /* apply shifting */ out1 = out1 >> kShift; out2 = out2 >> kShift; out3 = out3 >> kShift; out4 = out4 >> kShift; /* saturate the output */ in1 = (q15_t) (__SSAT(out1, 16)); in2 = (q15_t) (__SSAT(out2, 16)); in3 = (q15_t) (__SSAT(out3, 16)); in4 = (q15_t) (__SSAT(out4, 16)); /* store result to destination */ write_q15x2_ia (&pOut, __PKHBT(in2, in1, 16)); write_q15x2_ia (&pOut, __PKHBT(in4, in3, 16)); #else *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); #endif /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) * k */ /* Scale, saturate and store result in destination buffer. */ *pOut++ = (q15_t) (__SSAT(((q31_t) (*pIn++) * scaleFract) >> kShift, 16)); /* Decrement loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* defined(ARM_MATH_MVEI) */ /** @} end of MatrixScale group */