/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_mult_f16.c * Description: Floating-point matrix multiplication * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions_f16.h" #if defined(ARM_FLOAT16_SUPPORTED) /** * @ingroup groupMatrix */ /** * @addtogroup MatrixMult * @{ */ /** * @brief Floating-point matrix multiplication. * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ #if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_2x2_mve( const arm_matrix_instance_f16 *pSrcA, const arm_matrix_instance_f16 *pSrcB, arm_matrix_instance_f16 *pDst) { static const uint16_t offsetA[8] = { 0, 0, 2, 2, 0, 0, 2, 2 }; /* offsetB allows to read and duplicate 1 row of B */ static const uint16_t offsetB[8] = { 0, 1, 0, 1, 0, 1, 0, 1 }; uint16x8_t vecOffsA, vecOffsB; f16x8_t vecInA, vecInB, vecDst; float16_t *pOut = pDst->pData; /* output data matrix pointer */ /* * load initial offsets */ vecOffsA = vldrhq_u16((uint16_t const *) offsetA); vecOffsB = vldrhq_u16((uint16_t const *) offsetB); /* * load {a00 a00 a10 a10 x x x x } */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * load {b00 b01 b00 b01 x x x x } */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 a00 b01 * a10 b00 a10 b01 * x x * x x } */ vecDst = vmulq(vecInA, vecInB); /* * move to 2nd column of matrix A */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1); /* * load {a01 a01 a11 a11 x x x x} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 2); /* * load {b10, b11, b10, b11, x x x x } */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 + a01 b10 a00 b01 + a01 b11 * a10 b00 + a11 b10 a10 b01 + a11 b11 * x x * x x } */ vecDst = vfmaq(vecDst, vecInA, vecInB); mve_pred16_t p0 = vctp16q(2*2); /* * Store the result in the destination buffer * (lower half of the vector) */ vstrhq_p(pOut, vecDst, p0); return (ARM_MATH_SUCCESS); } __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_3x3_mve( const arm_matrix_instance_f16 *pSrcA, const arm_matrix_instance_f16 *pSrcB, arm_matrix_instance_f16 *pDst) { static const uint16_t offsetA[8] = { 0, 0, 0, 3, 3, 3, 6, 6 }; /* offsetB allows to read and duplicate 1 row of B */ static const uint16_t offsetB[8] = { 0, 1, 2, 0, 1, 2, 0, 1 }; uint16x8_t vecOffsA, vecOffsB; f16x8_t vecInA, vecInB, vecDst; float16_t *pOut = pDst->pData; /* output data matrix pointer */ /* * load initial offsets */ vecOffsA = vldrhq_u16((uint16_t const *) offsetA); vecOffsB = vldrhq_u16((uint16_t const *) offsetB); /* * load {a00 a00 a00 a10 a10 a10 a20 a20} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * load {b00 b01 b02 b00 b01 b02 b00 b01} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 a00 b01 a00 b02 * a10 b00 a10 b01 a10 b02 * a20 b00 a20 b01} */ vecDst = vmulq(vecInA, vecInB); /* * move to 2nd column of matrix A */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1); /* * load {a01 a01 a01 a11 a11 a11 a21 a21} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3); /* * load {b10, b11, b12, b10, b11, b12, b10, b11} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12 * a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12 * a20 b00 + a21 b10 a20 b01 + a21 b11 } */ vecDst = vfmaq(vecDst, vecInA, vecInB); /* * move to 3rd column of matrix A */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 1); /* * load {a02 a02 a02 a12 a12 a12 a22 a22} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 3); /* * load {b20, b21, b22, b20, b21, b22, b20, b21} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * {a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22}, * a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22}, * a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 } */ vecDst = vfmaq(vecDst, vecInA, vecInB); /* * Store the result in the destination buffer */ vst1q(pOut, vecDst); pOut += 8; /* last element computed in scalar mode * a20 b02 + a21 b12 + a22 b22 */ _Float16 * pA = (_Float16 *)pSrcA->pData; _Float16 * pB = (_Float16 *)pSrcB->pData; *pOut = pA[2*3] * pB[2] + pA[2*3+1] * pB[3+2] + pA[2*3+2] * pB[2*3+2]; return (ARM_MATH_SUCCESS); } __STATIC_FORCEINLINE arm_status arm_mat_mult_f16_4x4_mve( const arm_matrix_instance_f16 *pSrcA, const arm_matrix_instance_f16 *pSrcB, arm_matrix_instance_f16 *pDst) { /* offsetA allows to read and duplicate 2 successive column elements of A */ static const uint16_t offsetA[8] = { 0, 0, 0, 0, 4, 4, 4, 4 }; /* offsetB allows to read and duplicate 1 row of B */ static const uint16_t offsetB[8] = { 0, 1, 2, 3, 0, 1, 2, 3 }; uint16x8_t vecOffsA, vecOffsB; f16x8_t vecInA, vecInB, vecDst0, vecDst1; float16_t *pOut = pDst->pData; /* output data matrix pointer */ /* * load initial offsets */ vecOffsA = vldrhq_u16((uint16_t const *) offsetA); vecOffsB = vldrhq_u16((uint16_t const *) offsetB); /* * load {a00 a00 a00 a00 a10 a10 a10 a10} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * load {b00 b01 b02 b03 b00 b01 b02 b03} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 a00 b01 a00 b02 a00 b03 * a10 b00 a10 b01 a10 b02 a10 b03 } */ vecDst0 = vmulq(vecInA, vecInB); /* * jump 2 x A rows (2nd half of matrix) */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8); /* * load {a20 a20 a20 a20 a30 a30 a30 a30} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * { a20 b00 a20 b01 a20 b02 a20 b03 * a30 b00 a30 b01 a30 b02 + a31 b12 } */ vecDst1 = vmulq(vecInA, vecInB); /* * rewind back to top half of the A matrix (2nd column) */ vecOffsA = vsubq(vecOffsA, (uint16_t) 7); /* * load {a01 a01 a01 a01 a11 a11 a11 a11} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4); /* * load {b10, b11, b12, b13, b10, b11, b12, b13} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 + a01 b10 a00 b01 + a01 b11 a00 b02 + a01 b12 a00 b03 + a01 b13 * a10 b00 + a11 b10 a10 b01 + a11 b11 a10 b02 + a11 b12 a10 b03 + a11 b13 } */ vecDst0 = vfmaq(vecDst0, vecInA, vecInB); /* * jump 2 x A rows (2nd half of matrix) */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8); /* * load {a21 a21 a21 a21 a31 a31 a31 a31} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * {a20 b00 + a21 b10 a20 b01 + a21 b11 a20 b02 + a21 b12 a20 b03 + a21 b13 * a30 b00 + a31 b10 a30 b01 + a31 b11 a30 b02 + a31 b12 a30 b03 + a31 b13 } */ vecDst1 = vfmaq(vecDst1, vecInA, vecInB); /* * rewind back to top half of the A matrix (3rd column) */ vecOffsA = vsubq(vecOffsA, (uint16_t) 7); /* * load {a02 a02 a02 a02 a12 a12 a12 a12} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4); /* * load {b20, b21, b22, b23, b20, b21, b22, b23} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 + a01 b10 + a02 b20 a00 b01 + a01 b11 + a02 b21 a00 b02 + a01 b12 + a02 b22 a00 b03 + a01 b13 + a02 b23 * a10 b00 + a11 b10 + a12 b20 a10 b01 + a11 b11 + a12 b21 a10 b02 + a11 b12 + a12 b22 a10 b03 + a11 b13 + a12 b23 } */ vecDst0 = vfmaq(vecDst0, vecInA, vecInB); /* * jump 2 x A rows */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8); /* * load {a22 a22 a22 a22 a32 a32 a32 a32} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * {a20 b00 + a21 b10 + a22 b20 a20 b01 + a21 b11 + a22 b21 a20 b02 + a21 b12 + a22 b22 a20 b03 + a21 b13 + a22 b23 * a30 b00 + a31 b10 + a32 b20 a30 b01 + a31 b11 + a32 b21 a30 b02 + a31 b12 + a32 b22 a30 b03 + a31 b13 + a32 b23 } */ vecDst1 = vfmaq(vecDst1, vecInA, vecInB); /* * rewind back to top half of the A matrix (4th column) */ vecOffsA = vsubq(vecOffsA, (uint16_t) 7); /* * load {a03 a03 a03 a03 a13 a13 a13 a13} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * move to next B row */ vecOffsB = vaddq_n_u16(vecOffsB, (uint16_t) 4); /* * load {b30, b31, b32, b33, b30, b31, b32, b33} */ vecInB = vldrhq_gather_shifted_offset((float16_t const *) pSrcB->pData, vecOffsB); /* * { a00 b00 +...+ a03 b30, a00 b01 +...+ a03 b31, a00 b02 +...+ a03 b32, a00 b03 +...+ a03 b33 * a10 b00 +...+ a13 b30, a10 b01 +...+ a13 b31, a10 b02 +...+ a13 b32, a10 b03 +...+ a13 b33 } */ vecDst0 = vfmaq(vecDst0, vecInA, vecInB); /* * jump 2 x A rows */ vecOffsA = vaddq_n_u16(vecOffsA, (uint16_t) 8); /* * load {a23 a23 a23 a23 a33 a33 a33 a33} */ vecInA = vldrhq_gather_shifted_offset((float16_t const *) pSrcA->pData, vecOffsA); /* * {a20 b00 +...+ a23 b30, a20 b01 +...+ a23 b31, a20 b02 +...+ a23 b32, a20 b03 +...+ a23 b33 * a30 b00 +...+ a33 b30, a30 b01 +...+ a33 b31, a30 b02 +...+ a33 b32, a30 b03 +...+ a33 b33 } */ vecDst1 = vfmaq(vecDst1, vecInA, vecInB); /* * Store the result in the destination buffer */ vst1q(pOut, vecDst0); pOut += 8; vst1q(pOut, vecDst1); return (ARM_MATH_SUCCESS); } arm_status arm_mat_mult_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst) { float16_t *pInB = pSrcB->pData; /* input data matrix pointer B */ float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */ float16_t *pOut = pDst->pData; /* output data matrix pointer */ int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ int numColsB = pSrcB->numCols; /* number of columns of input matrix B */ int numColsA = pSrcA->numCols; /* number of columns of input matrix A */ uint32_t blkCnt; /* loop counters */ int i; #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ return(ARM_MATH_SIZE_MISMATCH); } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* small squared matrix specialized routines */ if(numRowsA == numColsB && numColsB == numColsA) { if(numRowsA == 2) return arm_mat_mult_f16_2x2_mve(pSrcA, pSrcB, pDst); else if(numRowsA == 3) return arm_mat_mult_f16_3x3_mve(pSrcA, pSrcB, pDst); else if(numRowsA == 4) return arm_mat_mult_f16_4x4_mve(pSrcA, pSrcB, pDst); } /* main loop process 4 rows */ i = numRowsA / 4; while(i > 0) { float16_t *pInA0, *pInA1, *pInA2, *pInA3; float16_t *pInB0; float16_t *pOut0, *pOut1, *pOut2, *pOut3; f16x8_t vecMac0, vecMac1, vecMac2, vecMac3; f16x8_t vecInB; /* pointers to 4 consecutive output rows */ pOut0 = pOut; pOut1 = pOut0 + numColsB; pOut2 = pOut1 + numColsB; pOut3 = pOut2 + numColsB; pInB0 = pInB; int k = numColsB >> 3; while(k > 0) { /* pointers to 4 consecutive Matrix A rows */ pInA0 = pInA; pInA1 = pInA0 + numColsA; pInA2 = pInA1 + numColsA; pInA3 = pInA2 + numColsA; vecMac0 = vdupq_n_f16(0.0f16); vecMac1 = vdupq_n_f16(0.0f16); vecMac2 = vdupq_n_f16(0.0f16); vecMac3 = vdupq_n_f16(0.0f16); blkCnt = numColsA; while (blkCnt > 0U) { /* * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3..., bi,4n+7} */ vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); pInB0 = pInB0 + numColsB; /* * Decrement the blockSize loop counter */ blkCnt--; } /* Store the results (4 x 8 block) in the destination buffer */ vst1q(pOut0, vecMac0); pOut0 += 8; vst1q(pOut1, vecMac1); pOut1 += 8; vst1q(pOut2, vecMac2); pOut2 += 8; vst1q(pOut3, vecMac3); pOut3 += 8; /* * rewind */ pInB0 -= (numColsB * numColsA) - 8; k--; } int colBLeft = numColsB & 7; if (colBLeft) { pInA0 = pInA; pInA1 = pInA0 + numColsA; pInA2 = pInA1 + numColsA; pInA3 = pInA2 + numColsA; mve_pred16_t p0 = vctp16q(colBLeft); vecMac0 = vdupq_n_f16(0.0f16); vecMac1 = vdupq_n_f16(0.0f16); vecMac2 = vdupq_n_f16(0.0f16); vecMac3 = vdupq_n_f16(0.0f16); blkCnt = numColsA; while (blkCnt > 0U) { /* * load {bi,4n+0, bi,4n+1, bi,4n+2, ..bi,4n+colBLeft-1, 0, ..} */ vecInB = vldrhq_z_f16(pInB0, p0); vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); pInB0 = pInB0 + numColsB; /* * Decrement the blockSize loop counter */ blkCnt--; } /* Store the results (4 x colBLeft block) in the destination buffer */ vstrhq_p_f16(pOut0, vecMac0, p0); vstrhq_p_f16(pOut1, vecMac1, p0); vstrhq_p_f16(pOut2, vecMac2, p0); vstrhq_p_f16(pOut3, vecMac3, p0); } pInA += 4 * numColsA; pOut += 4 * numColsB; i--; } /* * non multiple of 4 rows for Matrix A * process single row */ if (numRowsA & 3) { i = numRowsA & 3; do { float16_t *pInA0; float16_t *pInB0; float16_t *pOut0; f16x8_t vecInB; f16x8_t vecMac0; pOut0 = pOut; pInB0 = pInB; int k = numColsB >> 3; while(k > 0) { pInA0 = pInA; vecMac0 = vdupq_n_f16(0.0f16); blkCnt = numColsA; while (blkCnt > 0U) { /* * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3, ...bi,4n+7} */ vecInB = *(f16x8_t *)pInB0; /* vldrhq_f16(pInB0, 0); */ vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); pInB0 = pInB0 + numColsB; /* * Decrement the blockSize loop counter */ blkCnt--; } /* Store the results (1 x 8 block) in the destination buffer */ vst1q(pOut0, vecMac0); pOut0 += 8; /* * rewind */ pInB0 -= (numColsB * numColsA) - 8; k--; } int colBLeft = numColsB & 7; if (colBLeft) { pInA0 = pInA; mve_pred16_t p0 = vctp16q(colBLeft); vecMac0 = vdupq_n_f16(0.0f16); blkCnt = numColsA; while (blkCnt > 0U) { /* * load {bi,4n+0, bi,4n+1, bi,4n+2, ..., bi,4n+colBLeft, 0, ...} */ vecInB = vldrhq_z_f16(pInB0, p0); vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); pInB0 = pInB0 + numColsB; /* * Decrement the blockSize loop counter */ blkCnt--; } /* Store the results (1 x colBLeft block) in the destination buffer */ vstrhq_p_f16(pOut0, vecMac0, p0); } pInA += 1 * numColsA; pOut += 1 * numColsB; } while (--i); } /* * Return to application */ return (ARM_MATH_SUCCESS); } } #else arm_status arm_mat_mult_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst) { float16_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ float16_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ float16_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ float16_t *pInB = pSrcB->pData; /* Input data matrix pointer B */ float16_t *pOut = pDst->pData; /* Output data matrix pointer */ float16_t *px; /* Temporary output data matrix pointer */ _Float16 sum; /* Accumulator */ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */ arm_status status; /* Status of matrix multiplication */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* Output pointer is set to starting address of row being processed */ px = pOut + i; /* For every row wise process, column loop counter is to be initiated */ col = numColsB; /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ pIn2 = pSrcB->pData; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0.0f16; /* Initialize pointer pIn1 to point to starting address of column being processed */ pIn1 = pInA; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 MACs at a time. */ colCnt = numColsA >> 2U; /* matrix multiplication */ while (colCnt > 0U) { /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ /* Perform the multiply-accumulates */ sum += (_Float16)*pIn1++ * (_Float16)*pIn2; pIn2 += numColsB; sum += (_Float16)*pIn1++ * (_Float16)*pIn2; pIn2 += numColsB; sum += (_Float16)*pIn1++ * (_Float16)*pIn2; pIn2 += numColsB; sum += (_Float16)*pIn1++ * (_Float16)*pIn2; pIn2 += numColsB; /* Decrement loop counter */ colCnt--; } /* Loop unrolling: Compute remaining MACs */ colCnt = numColsA % 0x4U; #else /* Initialize cntCnt with number of columns */ colCnt = numColsA; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (colCnt > 0U) { /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */ /* Perform the multiply-accumulates */ sum += (_Float16)*pIn1++ * (_Float16)*pIn2; pIn2 += numColsB; /* Decrement loop counter */ colCnt--; } /* Store result in destination buffer */ *px++ = sum; /* Decrement column loop counter */ col--; /* Update pointer pIn2 to point to starting address of next column */ pIn2 = pInB + (numColsB - col); } while (col > 0U); /* Update pointer pInA to point to starting address of next row */ i = i + numColsB; pInA = pInA + numColsA; /* Decrement row loop counter */ row--; } while (row > 0U); /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** * @} end of MatrixMult group */ #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */