/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_mat_add_f32.c * Description: Floating-point matrix addition * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/matrix_functions.h" /** @ingroup groupMatrix */ /** @defgroup MatrixAdd Matrix Addition Adds two matrices. \image html MatrixAddition.gif "Addition of two 3 x 3 matrices" The functions check to make sure that pSrcA, pSrcB, and pDst have the same number of rows and columns. */ /** @addtogroup MatrixAdd @{ */ /** @brief Floating-point matrix addition. @param[in] pSrcA points to first input matrix structure @param[in] pSrcB points to second input matrix structure @param[out] pDst points to output matrix structure @return execution status - \ref ARM_MATH_SUCCESS : Operation successful - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst) { arm_status status; uint32_t numSamples; /* total number of elements in the matrix */ float32_t *pDataA, *pDataB, *pDataDst; f32x4_t vecA, vecB, vecDst; float32_t const *pSrcAVec; float32_t const *pSrcBVec; uint32_t blkCnt; /* loop counters */ pDataA = pSrcA->pData; pDataB = pSrcB->pData; pDataDst = pDst->pData; pSrcAVec = (float32_t const *) pDataA; pSrcBVec = (float32_t const *) pDataB; #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { /* * Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; blkCnt = numSamples >> 2; while (blkCnt > 0U) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add and then store the results in the destination buffer. */ vecA = vld1q(pSrcAVec); pSrcAVec += 4; vecB = vld1q(pSrcBVec); pSrcBVec += 4; vecDst = vaddq(vecA, vecB); vst1q(pDataDst, vecDst); pDataDst += 4; /* * Decrement the blockSize loop counter */ blkCnt--; } /* * tail */ blkCnt = numSamples & 3; if (blkCnt > 0U) { mve_pred16_t p0 = vctp32q(blkCnt); vecA = vld1q(pSrcAVec); vecB = vld1q(pSrcBVec); vecDst = vaddq_m(vecDst, vecA, vecB, p0); vstrwq_p(pDataDst, vecDst, p0); } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } return (status); } #else #if defined(ARM_MATH_NEON) /* Neon version is assuming the matrix is small enough. So no blocking is used for taking into account cache effects. For big matrix, there exist better libraries for Neon. */ arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst) { float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix addition */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { float32x4_t vec1; float32x4_t vec2; float32x4_t res; /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; blkCnt = numSamples >> 2U; /* Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add and then store the results in the destination buffer. */ vec1 = vld1q_f32(pIn1); vec2 = vld1q_f32(pIn2); res = vaddq_f32(vec1, vec2); vst1q_f32(pOut, res); /* update pointers to process next samples */ pIn1 += 4U; pIn2 += 4U; pOut += 4U; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add and then store the results in the destination buffer. */ *pOut++ = (*pIn1++) + (*pIn2++); /* Decrement the loop counter */ blkCnt--; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #else arm_status arm_mat_add_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst) { float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix addition */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if ((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols) ) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Total number of samples in input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; #if defined (ARM_MATH_LOOPUNROLL) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = numSamples >> 2U; while (blkCnt > 0U) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add and store result in destination buffer. */ *pOut++ = *pInA++ + *pInB++; *pOut++ = *pInA++ + *pInB++; *pOut++ = *pInA++ + *pInB++; *pOut++ = *pInA++ + *pInB++; /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = numSamples % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ while (blkCnt > 0U) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add and store result in destination buffer. */ *pOut++ = *pInA++ + *pInB++; /* Decrement loop counter */ blkCnt--; } /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } #endif /* #if defined(ARM_MATH_NEON) */ #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of MatrixAdd group */