/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_vlog_q31 * Description: Q31 vector log * * $Date: 19 July 2021 * $Revision: V1.10.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/fast_math_functions.h" #define LOG_Q31_ACCURACY 31 /* Bit to represent the normalization factor It is Ceiling[Log2[LOG_Q31_ACCURACY]] of the previous value. The Log2 algorithm is assuming that the value x is 1 <= x < 2. But input value could be as small a 2^-LOG_Q31_ACCURACY which would give an integer part of -31. */ #define LOG_Q31_INTEGER_PART 5 /* 2.0 in Q30 */ #define LOQ_Q31_THRESHOLD (1u << LOG_Q31_ACCURACY) /* HALF */ #define LOQ_Q31_Q32_HALF LOQ_Q31_THRESHOLD #define LOQ_Q31_Q30_HALF (LOQ_Q31_Q32_HALF >> 2) /* 1.0 / Log2[Exp[1]] in Q31 */ #define LOG_Q31_INVLOG2EXP 0x58b90bfbuL /* Clay Turner algorithm */ static uint32_t arm_scalar_log_q31(uint32_t src) { int32_t i; int32_t c = __CLZ(src); int32_t normalization=0; /* 0.5 in q26 */ uint32_t inc = LOQ_Q31_Q32_HALF >> (LOG_Q31_INTEGER_PART + 1); /* Will compute y = log2(x) for 1 <= x < 2.0 */ uint32_t x; /* q26 */ uint32_t y=0; /* q26 */ int32_t tmp; /* Normalize and convert to q30 format */ x = src; if ((c-1) < 0) { x = x >> (1-c); } else { x = x << (c-1); } normalization = c; /* Compute the Log2. Result is in q26 because we know 0 <= y < 1.0 but do not want to use q32 to allow following computation with less instructions. */ for(i = 0; i < LOG_Q31_ACCURACY ; i++) { x = ((int64_t)x*x) >> (LOG_Q31_ACCURACY - 1); if (x >= LOQ_Q31_THRESHOLD) { y += inc ; x = x >> 1; } inc = inc >> 1; } /* Convert the Log2 to Log and apply normalization. We compute (y - normalisation) * (1 / Log2[e]). */ /* q26 */ tmp = (int32_t)y - (normalization << (LOG_Q31_ACCURACY - LOG_Q31_INTEGER_PART)); /* q5.26 */ y = ((int64_t)tmp * LOG_Q31_INVLOG2EXP) >> 31; return(y); } #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) q31x4_t vlogq_q31(q31x4_t src) { int32_t i; int32x4_t c = vclzq_s32(src); int32x4_t normalization = c; /* 0.5 in q11 */ uint32_t inc = LOQ_Q31_Q32_HALF >> (LOG_Q31_INTEGER_PART + 1); /* Will compute y = log2(x) for 1 <= x < 2.0 */ uint32x4_t x; /* q11 */ uint32x4_t y = vdupq_n_u32(0); /* q11 */ int32x4_t vtmp; mve_pred16_t p; /* Normalize and convert to q14 format */ vtmp = vsubq_n_s32(c,1); x = vshlq_u32((uint32x4_t)src,vtmp); /* Compute the Log2. Result is in Q26 because we know 0 <= y < 1.0 but do not want to use Q32 to allow following computation with less instructions. */ for(i = 0; i < LOG_Q31_ACCURACY ; i++) { x = vmulhq_u32(x,x); x = vshlq_n_u32(x,2); p = vcmphiq_u32(x,vdupq_n_u32(LOQ_Q31_THRESHOLD)); y = vaddq_m_n_u32(y, y,inc,p); x = vshrq_m_n_u32(x,x,1,p); inc = inc >> 1; } /* Convert the Log2 to Log and apply normalization. We compute (y - normalisation) * (1 / Log2[e]). */ /* q11 */ // tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART)); vtmp = vshlq_n_s32(normalization,LOG_Q31_ACCURACY - LOG_Q31_INTEGER_PART); vtmp = vsubq_s32((int32x4_t)y,vtmp); /* q4.11 */ // y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15; vtmp = vqdmulhq_n_s32(vtmp,LOG_Q31_INVLOG2EXP); return(vtmp); } #endif /** @ingroup groupFastMath */ /** @addtogroup vlog @{ */ /** @brief q31 vector of log values. @param[in] pSrc points to the input vector in q31 @param[out] pDst points to the output vector q5.26 @param[in] blockSize number of samples in each vector @return none */ void arm_vlog_q31( const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counters */ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) q31x4_t src; q31x4_t dst; blkCnt = blockSize >> 2; while (blkCnt > 0U) { src = vld1q(pSrc); dst = vlogq_q31(src); vst1q(pDst, dst); pSrc += 4; pDst += 4; /* Decrement loop counter */ blkCnt--; } blkCnt = blockSize & 3; #else blkCnt = blockSize; #endif while (blkCnt > 0U) { *pDst++=arm_scalar_log_q31(*pSrc++); blkCnt--; } } /** @} end of vlog group */