/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_sqrt_q31.c * Description: Q31 square root function * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/fast_math_functions.h" #include "arm_common_tables.h" /** @ingroup groupFastMath */ /** @addtogroup SQRT @{ */ /** @brief Q31 square root function. @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF @param[out] pOut points to square root of input value @return execution status - \ref ARM_MATH_SUCCESS : input value is positive - \ref ARM_MATH_ARGUMENT_ERROR : input value is negative; *pOut is set to 0 */ #define Q28QUARTER 0x20000000 arm_status arm_sqrt_q31( q31_t in, q31_t * pOut) { q31_t number, var1, signBits1 ,temp; number = in; /* If the input is a positive number then compute the signBits. */ if (number > 0) { signBits1 = __CLZ(number) - 1; /* Shift by the number of signBits1 */ if ((signBits1 % 2) == 0) { number = number << signBits1; } else { number = number << (signBits1 - 1); } /* Start value for 1/sqrt(x) for the Newton iteration */ var1 = sqrt_initial_lut_q31[(number>> 26) - (Q28QUARTER >> 26)]; /* 0.5 var1 * (3 - number * var1 * var1) */ /* 1st iteration */ temp = ((q63_t) var1 * var1) >> 28; temp = ((q63_t) number * temp) >> 31; temp = 0x30000000 - temp; var1 = ((q63_t) var1 * temp) >> 29; /* 2nd iteration */ temp = ((q63_t) var1 * var1) >> 28; temp = ((q63_t) number * temp) >> 31; temp = 0x30000000 - temp; var1 = ((q63_t) var1 * temp) >> 29; /* 3nd iteration */ temp = ((q63_t) var1 * var1) >> 28; temp = ((q63_t) number * temp) >> 31; temp = 0x30000000 - temp; var1 = ((q63_t) var1 * temp) >> 29; /* Multiply the inverse square root with the original value */ var1 = ((q31_t) (((q63_t) number * var1) >> 28)); /* Shift the output down accordingly */ if ((signBits1 % 2) == 0) { var1 = var1 >> (signBits1 / 2); } else { var1 = var1 >> ((signBits1 - 1) / 2); } *pOut = var1; return (ARM_MATH_SUCCESS); } /* If the number is a negative number then store zero as its square root value */ else { *pOut = 0; return (ARM_MATH_ARGUMENT_ERROR); } } /** @} end of SQRT group */