/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_dot_prod_f32.c * Description: Floating-point dot product * * $Date: 05 October 2021 * $Revision: V1.9.1 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/basic_math_functions.h" /** @ingroup groupMath */ /** @defgroup BasicDotProd Vector Dot Product Computes the dot product of two vectors. The vectors are multiplied element-by-element and then summed.
sum = pSrcA[0]*pSrcB[0] + pSrcA[1]*pSrcB[1] + ... + pSrcA[blockSize-1]*pSrcB[blockSize-1]There are separate functions for floating-point, Q7, Q15, and Q31 data types. */ /** @addtogroup BasicDotProd @{ */ /** @brief Dot product of floating-point vectors. @param[in] pSrcA points to the first input vector. @param[in] pSrcB points to the second input vector. @param[in] blockSize number of samples in each vector. @param[out] result output result returned here. @return none */ #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) #include "arm_helium_utils.h" void arm_dot_prod_f32( const float32_t * pSrcA, const float32_t * pSrcB, uint32_t blockSize, float32_t * result) { f32x4_t vecA, vecB; f32x4_t vecSum; uint32_t blkCnt; float32_t sum = 0.0f; vecSum = vdupq_n_f32(0.0f); /* Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; while (blkCnt > 0U) { /* * C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] * Calculate dot product and then store the result in a temporary buffer. * and advance vector source and destination pointers */ vecA = vld1q(pSrcA); pSrcA += 4; vecB = vld1q(pSrcB); pSrcB += 4; vecSum = vfmaq(vecSum, vecA, vecB); /* * Decrement the blockSize loop counter */ blkCnt --; } blkCnt = blockSize & 3; if (blkCnt > 0U) { /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ mve_pred16_t p0 = vctp32q(blkCnt); vecA = vld1q(pSrcA); vecB = vld1q(pSrcB); vecSum = vfmaq_m(vecSum, vecA, vecB, p0); } sum = vecAddAcrossF32Mve(vecSum); /* Store result in destination buffer */ *result = sum; } #else void arm_dot_prod_f32( const float32_t * pSrcA, const float32_t * pSrcB, uint32_t blockSize, float32_t * result) { uint32_t blkCnt; /* Loop counter */ float32_t sum = 0.0f; /* Temporary return variable */ #if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) f32x4_t vec1; f32x4_t vec2; f32x4_t accum = vdupq_n_f32(0); #if !defined(__aarch64__) f32x2_t tmp = vdup_n_f32(0); #endif /* Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; vec1 = vld1q_f32(pSrcA); vec2 = vld1q_f32(pSrcB); while (blkCnt > 0U) { /* C = A[0]*B[0] + A[1]*B[1] + A[2]*B[2] + ... + A[blockSize-1]*B[blockSize-1] */ /* Calculate dot product and then store the result in a temporary buffer. */ accum = vmlaq_f32(accum, vec1, vec2); /* Increment pointers */ pSrcA += 4; pSrcB += 4; vec1 = vld1q_f32(pSrcA); vec2 = vld1q_f32(pSrcB); /* Decrement the loop counter */ blkCnt--; } #if defined(__aarch64__) sum = vpadds_f32(vpadd_f32(vget_low_f32(accum), vget_high_f32(accum))); #else tmp = vpadd_f32(vget_low_f32(accum), vget_high_f32(accum)); sum = vget_lane_f32(tmp, 0) + vget_lane_f32(tmp, 1); #endif /* Tail */ blkCnt = blockSize & 0x3; #else #if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE) /* Loop unrolling: Compute 4 outputs at a time */ blkCnt = blockSize >> 2U; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while (blkCnt > 0U) { /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ /* Calculate dot product and store result in a temporary buffer. */ sum += (*pSrcA++) * (*pSrcB++); sum += (*pSrcA++) * (*pSrcB++); sum += (*pSrcA++) * (*pSrcB++); sum += (*pSrcA++) * (*pSrcB++); /* Decrement loop counter */ blkCnt--; } /* Loop unrolling: Compute remaining outputs */ blkCnt = blockSize % 0x4U; #else /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #if defined (ARM_MATH_LOOPUNROLL) */ #endif /* #if defined(ARM_MATH_NEON) */ while (blkCnt > 0U) { /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ /* Calculate dot product and store result in a temporary buffer. */ sum += (*pSrcA++) * (*pSrcB++); /* Decrement loop counter */ blkCnt--; } /* Store result in destination buffer */ *result = sum; } #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ /** @} end of BasicDotProd group */