/* * Copyright (c) 2013-2021 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ---------------------------------------------------------------------- * * $Date: 29. March 2021 * $Revision: V2.0.1 * * Project: CMSIS-DAP Source * Title: SWO.c CMSIS-DAP SWO I/O * *---------------------------------------------------------------------------*/ #include "DAP_config.h" #include "DAP.h" #if (SWO_UART != 0) #include "Driver_USART.h" #endif #if (SWO_STREAM != 0) #include "cmsis_os2.h" #define osObjectsExternal #include "osObjects.h" #endif #if (SWO_STREAM != 0) #ifdef DAP_FW_V1 #error "SWO Streaming Trace not supported in DAP V1!" #endif #endif #if (SWO_UART != 0) // USART Driver #define _USART_Driver_(n) Driver_USART##n #define USART_Driver_(n) _USART_Driver_(n) extern ARM_DRIVER_USART USART_Driver_(SWO_UART_DRIVER); #define pUSART (&USART_Driver_(SWO_UART_DRIVER)) static uint8_t USART_Ready = 0U; #endif /* (SWO_UART != 0) */ #if ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) #define SWO_STREAM_TIMEOUT 50U /* Stream timeout in ms */ #define USB_BLOCK_SIZE 512U /* USB Block Size */ #define TRACE_BLOCK_SIZE 64U /* Trace Block Size (2^n: 32...512) */ // Trace State static uint8_t TraceTransport = 0U; /* Trace Transport */ static uint8_t TraceMode = 0U; /* Trace Mode */ static uint8_t TraceStatus = 0U; /* Trace Status without Errors */ static uint8_t TraceError[2] = {0U, 0U}; /* Trace Error flags (banked) */ static uint8_t TraceError_n = 0U; /* Active Trace Error bank */ // Trace Buffer static uint8_t TraceBuf[SWO_BUFFER_SIZE]; /* Trace Buffer (must be 2^n) */ static volatile uint32_t TraceIndexI = 0U; /* Incoming Trace Index */ static volatile uint32_t TraceIndexO = 0U; /* Outgoing Trace Index */ static volatile uint8_t TraceUpdate; /* Trace Update Flag */ static uint32_t TraceBlockSize; /* Current Trace Block Size */ #if (TIMESTAMP_CLOCK != 0U) // Trace Timestamp static volatile struct { uint32_t index; uint32_t tick; } TraceTimestamp; #endif // Trace Helper functions static void ClearTrace (void); static void ResumeTrace (void); static uint32_t GetTraceCount (void); static uint8_t GetTraceStatus (void); static void SetTraceError (uint8_t flag); #if (SWO_STREAM != 0) extern osThreadId_t SWO_ThreadId; static volatile uint8_t TransferBusy = 0U; /* Transfer Busy Flag */ static uint32_t TransferSize; /* Current Transfer Size */ #endif #if (SWO_UART != 0) // USART Driver Callback function // event: event mask static void USART_Callback (uint32_t event) { uint32_t index_i; uint32_t index_o; uint32_t count; uint32_t num; if (event & ARM_USART_EVENT_RECEIVE_COMPLETE) { #if (TIMESTAMP_CLOCK != 0U) TraceTimestamp.tick = TIMESTAMP_GET(); #endif index_o = TraceIndexO; index_i = TraceIndexI; index_i += TraceBlockSize; TraceIndexI = index_i; #if (TIMESTAMP_CLOCK != 0U) TraceTimestamp.index = index_i; #endif num = TRACE_BLOCK_SIZE - (index_i & (TRACE_BLOCK_SIZE - 1U)); count = index_i - index_o; if (count <= (SWO_BUFFER_SIZE - num)) { index_i &= SWO_BUFFER_SIZE - 1U; TraceBlockSize = num; pUSART->Receive(&TraceBuf[index_i], num); } else { TraceStatus = DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED; } TraceUpdate = 1U; #if (SWO_STREAM != 0) if (TraceTransport == 2U) { if (count >= (USB_BLOCK_SIZE - (index_o & (USB_BLOCK_SIZE - 1U)))) { osThreadFlagsSet(SWO_ThreadId, 1U); } } #endif } if (event & ARM_USART_EVENT_RX_OVERFLOW) { SetTraceError(DAP_SWO_BUFFER_OVERRUN); } if (event & (ARM_USART_EVENT_RX_BREAK | ARM_USART_EVENT_RX_FRAMING_ERROR | ARM_USART_EVENT_RX_PARITY_ERROR)) { SetTraceError(DAP_SWO_STREAM_ERROR); } } // Enable or disable SWO Mode (UART) // enable: enable flag // return: 1 - Success, 0 - Error __WEAK uint32_t SWO_Mode_UART (uint32_t enable) { int32_t status; USART_Ready = 0U; if (enable != 0U) { status = pUSART->Initialize(USART_Callback); if (status != ARM_DRIVER_OK) { return (0U); } status = pUSART->PowerControl(ARM_POWER_FULL); if (status != ARM_DRIVER_OK) { pUSART->Uninitialize(); return (0U); } } else { pUSART->Control(ARM_USART_CONTROL_RX, 0U); pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U); pUSART->PowerControl(ARM_POWER_OFF); pUSART->Uninitialize(); } return (1U); } // Configure SWO Baudrate (UART) // baudrate: requested baudrate // return: actual baudrate or 0 when not configured __WEAK uint32_t SWO_Baudrate_UART (uint32_t baudrate) { int32_t status; uint32_t index; uint32_t num; if (baudrate > SWO_UART_MAX_BAUDRATE) { baudrate = SWO_UART_MAX_BAUDRATE; } if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) { pUSART->Control(ARM_USART_CONTROL_RX, 0U); if (pUSART->GetStatus().rx_busy) { TraceIndexI += pUSART->GetRxCount(); pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U); } } status = pUSART->Control(ARM_USART_MODE_ASYNCHRONOUS | ARM_USART_DATA_BITS_8 | ARM_USART_PARITY_NONE | ARM_USART_STOP_BITS_1, baudrate); if (status == ARM_DRIVER_OK) { USART_Ready = 1U; } else { USART_Ready = 0U; return (0U); } if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) { if ((TraceStatus & DAP_SWO_CAPTURE_PAUSED) == 0U) { index = TraceIndexI & (SWO_BUFFER_SIZE - 1U); num = TRACE_BLOCK_SIZE - (index & (TRACE_BLOCK_SIZE - 1U)); TraceBlockSize = num; pUSART->Receive(&TraceBuf[index], num); } pUSART->Control(ARM_USART_CONTROL_RX, 1U); } return (baudrate); } // Control SWO Capture (UART) // active: active flag // return: 1 - Success, 0 - Error __WEAK uint32_t SWO_Control_UART (uint32_t active) { int32_t status; if (active) { if (!USART_Ready) { return (0U); } TraceBlockSize = 1U; status = pUSART->Receive(&TraceBuf[0], 1U); if (status != ARM_DRIVER_OK) { return (0U); } status = pUSART->Control(ARM_USART_CONTROL_RX, 1U); if (status != ARM_DRIVER_OK) { return (0U); } } else { pUSART->Control(ARM_USART_CONTROL_RX, 0U); if (pUSART->GetStatus().rx_busy) { TraceIndexI += pUSART->GetRxCount(); pUSART->Control(ARM_USART_ABORT_RECEIVE, 0U); } } return (1U); } // Start SWO Capture (UART) // buf: pointer to buffer for capturing // num: number of bytes to capture __WEAK void SWO_Capture_UART (uint8_t *buf, uint32_t num) { TraceBlockSize = num; pUSART->Receive(buf, num); } // Get SWO Pending Trace Count (UART) // return: number of pending trace data bytes __WEAK uint32_t SWO_GetCount_UART (void) { uint32_t count; if (pUSART->GetStatus().rx_busy) { count = pUSART->GetRxCount(); } else { count = 0U; } return (count); } #endif /* (SWO_UART != 0) */ #if (SWO_MANCHESTER != 0) // Enable or disable SWO Mode (Manchester) // enable: enable flag // return: 1 - Success, 0 - Error __WEAK uint32_t SWO_Mode_Manchester (uint32_t enable) { return (0U); } // Configure SWO Baudrate (Manchester) // baudrate: requested baudrate // return: actual baudrate or 0 when not configured __WEAK uint32_t SWO_Baudrate_Manchester (uint32_t baudrate) { return (0U); } // Control SWO Capture (Manchester) // active: active flag // return: 1 - Success, 0 - Error __WEAK uint32_t SWO_Control_Manchester (uint32_t active) { return (0U); } // Start SWO Capture (Manchester) // buf: pointer to buffer for capturing // num: number of bytes to capture __WEAK void SWO_Capture_Manchester (uint8_t *buf, uint32_t num) { } // Get SWO Pending Trace Count (Manchester) // return: number of pending trace data bytes __WEAK uint32_t SWO_GetCount_Manchester (void) { } #endif /* (SWO_MANCHESTER != 0) */ // Clear Trace Errors and Data static void ClearTrace (void) { #if (SWO_STREAM != 0) if (TraceTransport == 2U) { if (TransferBusy != 0U) { SWO_AbortTransfer(); TransferBusy = 0U; } } #endif TraceError[0] = 0U; TraceError[1] = 0U; TraceError_n = 0U; TraceIndexI = 0U; TraceIndexO = 0U; #if (TIMESTAMP_CLOCK != 0U) TraceTimestamp.index = 0U; TraceTimestamp.tick = 0U; #endif } // Resume Trace Capture static void ResumeTrace (void) { uint32_t index_i; uint32_t index_o; if (TraceStatus == (DAP_SWO_CAPTURE_ACTIVE | DAP_SWO_CAPTURE_PAUSED)) { index_i = TraceIndexI; index_o = TraceIndexO; if ((index_i - index_o) < SWO_BUFFER_SIZE) { index_i &= SWO_BUFFER_SIZE - 1U; switch (TraceMode) { #if (SWO_UART != 0) case DAP_SWO_UART: TraceStatus = DAP_SWO_CAPTURE_ACTIVE; SWO_Capture_UART(&TraceBuf[index_i], 1U); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: TraceStatus = DAP_SWO_CAPTURE_ACTIVE; SWO_Capture_Manchester(&TraceBuf[index_i], 1U); break; #endif default: break; } } } } // Get Trace Count // return: number of available data bytes in trace buffer static uint32_t GetTraceCount (void) { uint32_t count; if (TraceStatus == DAP_SWO_CAPTURE_ACTIVE) { do { TraceUpdate = 0U; count = TraceIndexI - TraceIndexO; switch (TraceMode) { #if (SWO_UART != 0) case DAP_SWO_UART: count += SWO_GetCount_UART(); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: count += SWO_GetCount_Manchester(); break; #endif default: break; } } while (TraceUpdate != 0U); } else { count = TraceIndexI - TraceIndexO; } return (count); } // Get Trace Status (clear Error flags) // return: Trace Status (Active flag and Error flags) static uint8_t GetTraceStatus (void) { uint8_t status; uint32_t n; n = TraceError_n; TraceError_n ^= 1U; status = TraceStatus | TraceError[n]; TraceError[n] = 0U; return (status); } // Set Trace Error flag(s) // flag: error flag(s) to set static void SetTraceError (uint8_t flag) { TraceError[TraceError_n] |= flag; } // Process SWO Transport command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_Transport (const uint8_t *request, uint8_t *response) { uint8_t transport; uint32_t result; if ((TraceStatus & DAP_SWO_CAPTURE_ACTIVE) == 0U) { transport = *request; switch (transport) { case 0U: case 1U: #if (SWO_STREAM != 0) case 2U: #endif TraceTransport = transport; result = 1U; break; default: result = 0U; break; } } else { result = 0U; } if (result != 0U) { *response = DAP_OK; } else { *response = DAP_ERROR; } return ((1U << 16) | 1U); } // Process SWO Mode command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_Mode (const uint8_t *request, uint8_t *response) { uint8_t mode; uint32_t result; mode = *request; switch (TraceMode) { #if (SWO_UART != 0) case DAP_SWO_UART: SWO_Mode_UART(0U); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: SWO_Mode_Manchester(0U); break; #endif default: break; } switch (mode) { case DAP_SWO_OFF: result = 1U; break; #if (SWO_UART != 0) case DAP_SWO_UART: result = SWO_Mode_UART(1U); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: result = SWO_Mode_Manchester(1U); break; #endif default: result = 0U; break; } if (result != 0U) { TraceMode = mode; } else { TraceMode = DAP_SWO_OFF; } TraceStatus = 0U; if (result != 0U) { *response = DAP_OK; } else { *response = DAP_ERROR; } return ((1U << 16) | 1U); } // Process SWO Baudrate command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_Baudrate (const uint8_t *request, uint8_t *response) { uint32_t baudrate; baudrate = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); switch (TraceMode) { #if (SWO_UART != 0) case DAP_SWO_UART: baudrate = SWO_Baudrate_UART(baudrate); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: baudrate = SWO_Baudrate_Manchester(baudrate); break; #endif default: baudrate = 0U; break; } if (baudrate == 0U) { TraceStatus = 0U; } *response++ = (uint8_t)(baudrate >> 0); *response++ = (uint8_t)(baudrate >> 8); *response++ = (uint8_t)(baudrate >> 16); *response = (uint8_t)(baudrate >> 24); return ((4U << 16) | 4U); } // Process SWO Control command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_Control (const uint8_t *request, uint8_t *response) { uint8_t active; uint32_t result; active = *request & DAP_SWO_CAPTURE_ACTIVE; if (active != (TraceStatus & DAP_SWO_CAPTURE_ACTIVE)) { if (active) { ClearTrace(); } switch (TraceMode) { #if (SWO_UART != 0) case DAP_SWO_UART: result = SWO_Control_UART(active); break; #endif #if (SWO_MANCHESTER != 0) case DAP_SWO_MANCHESTER: result = SWO_Control_Manchester(active); break; #endif default: result = 0U; break; } if (result != 0U) { TraceStatus = active; #if (SWO_STREAM != 0) if (TraceTransport == 2U) { osThreadFlagsSet(SWO_ThreadId, 1U); } #endif } } else { result = 1U; } if (result != 0U) { *response = DAP_OK; } else { *response = DAP_ERROR; } return ((1U << 16) | 1U); } // Process SWO Status command and prepare response // response: pointer to response data // return: number of bytes in response uint32_t SWO_Status (uint8_t *response) { uint8_t status; uint32_t count; status = GetTraceStatus(); count = GetTraceCount(); *response++ = status; *response++ = (uint8_t)(count >> 0); *response++ = (uint8_t)(count >> 8); *response++ = (uint8_t)(count >> 16); *response = (uint8_t)(count >> 24); return (5U); } // Process SWO Extended Status command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_ExtendedStatus (const uint8_t *request, uint8_t *response) { uint8_t cmd; uint8_t status; uint32_t count; #if (TIMESTAMP_CLOCK != 0U) uint32_t index; uint32_t tick; #endif uint32_t num; num = 0U; cmd = *request; if (cmd & 0x01U) { status = GetTraceStatus(); *response++ = status; num += 1U; } if (cmd & 0x02U) { count = GetTraceCount(); *response++ = (uint8_t)(count >> 0); *response++ = (uint8_t)(count >> 8); *response++ = (uint8_t)(count >> 16); *response++ = (uint8_t)(count >> 24); num += 4U; } #if (TIMESTAMP_CLOCK != 0U) if (cmd & 0x04U) { do { TraceUpdate = 0U; index = TraceTimestamp.index; tick = TraceTimestamp.tick; } while (TraceUpdate != 0U); *response++ = (uint8_t)(index >> 0); *response++ = (uint8_t)(index >> 8); *response++ = (uint8_t)(index >> 16); *response++ = (uint8_t)(index >> 24); *response++ = (uint8_t)(tick >> 0); *response++ = (uint8_t)(tick >> 8); *response++ = (uint8_t)(tick >> 16); *response++ = (uint8_t)(tick >> 24); num += 4U; } #endif return ((1U << 16) | num); } // Process SWO Data command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t SWO_Data (const uint8_t *request, uint8_t *response) { uint8_t status; uint32_t count; uint32_t index; uint32_t n, i; status = GetTraceStatus(); count = GetTraceCount(); if (TraceTransport == 1U) { n = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8); if (n > (DAP_PACKET_SIZE - 4U)) { n = DAP_PACKET_SIZE - 4U; } if (count > n) { count = n; } } else { count = 0U; } *response++ = status; *response++ = (uint8_t)(count >> 0); *response++ = (uint8_t)(count >> 8); if (TraceTransport == 1U) { index = TraceIndexO; for (i = index, n = count; n; n--) { i &= SWO_BUFFER_SIZE - 1U; *response++ = TraceBuf[i++]; } TraceIndexO = index + count; ResumeTrace(); } return ((2U << 16) | (3U + count)); } #if (SWO_STREAM != 0) // SWO Data Transfer complete callback void SWO_TransferComplete (void) { TraceIndexO += TransferSize; TransferBusy = 0U; ResumeTrace(); osThreadFlagsSet(SWO_ThreadId, 1U); } // SWO Thread __NO_RETURN void SWO_Thread (void *argument) { uint32_t timeout; uint32_t flags; uint32_t count; uint32_t index; uint32_t i, n; (void) argument; timeout = osWaitForever; for (;;) { flags = osThreadFlagsWait(1U, osFlagsWaitAny, timeout); if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) { timeout = SWO_STREAM_TIMEOUT; } else { timeout = osWaitForever; flags = osFlagsErrorTimeout; } if (TransferBusy == 0U) { count = GetTraceCount(); if (count != 0U) { index = TraceIndexO & (SWO_BUFFER_SIZE - 1U); n = SWO_BUFFER_SIZE - index; if (count > n) { count = n; } if (flags != osFlagsErrorTimeout) { i = index & (USB_BLOCK_SIZE - 1U); if (i == 0U) { count &= ~(USB_BLOCK_SIZE - 1U); } else { n = USB_BLOCK_SIZE - i; if (count >= n) { count = n; } else { count = 0U; } } } if (count != 0U) { TransferSize = count; TransferBusy = 1U; SWO_QueueTransfer(&TraceBuf[index], count); } } } } } #endif /* (SWO_STREAM != 0) */ #endif /* ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) */