/* * Copyright (c) 2013-2022 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ---------------------------------------------------------------------- * * $Date: 26. April 2022 * $Revision: V2.1.1 * * Project: CMSIS-DAP Source * Title: DAP.c CMSIS-DAP Commands * *---------------------------------------------------------------------------*/ #include #include "DAP_config.h" #include "DAP.h" #if (DAP_PACKET_SIZE < 64U) #error "Minimum Packet Size is 64!" #endif #if (DAP_PACKET_SIZE > 32768U) #error "Maximum Packet Size is 32768!" #endif #if (DAP_PACKET_COUNT < 1U) #error "Minimum Packet Count is 1!" #endif #if (DAP_PACKET_COUNT > 255U) #error "Maximum Packet Count is 255!" #endif // Clock Macros #define MAX_SWJ_CLOCK(delay_cycles) \ ((CPU_CLOCK/2U) / (IO_PORT_WRITE_CYCLES + delay_cycles)) DAP_Data_t DAP_Data; // DAP Data volatile uint8_t DAP_TransferAbort; // Transfer Abort Flag static const char DAP_FW_Ver [] = DAP_FW_VER; // Common clock delay calculation routine // clock: requested SWJ frequency in Hertz static void Set_Clock_Delay(uint32_t clock) { uint32_t delay; if (clock >= MAX_SWJ_CLOCK(DELAY_FAST_CYCLES)) { DAP_Data.fast_clock = 1U; DAP_Data.clock_delay = 1U; } else { DAP_Data.fast_clock = 0U; delay = ((CPU_CLOCK/2U) + (clock - 1U)) / clock; if (delay > IO_PORT_WRITE_CYCLES) { delay -= IO_PORT_WRITE_CYCLES; delay = (delay + (DELAY_SLOW_CYCLES - 1U)) / DELAY_SLOW_CYCLES; } else { delay = 1U; } DAP_Data.clock_delay = delay; } } // Get DAP Information // id: info identifier // info: pointer to info data // return: number of bytes in info data static uint8_t DAP_Info(uint8_t id, uint8_t *info) { uint8_t length = 0U; switch (id) { case DAP_ID_VENDOR: length = DAP_GetVendorString((char *)info); break; case DAP_ID_PRODUCT: length = DAP_GetProductString((char *)info); break; case DAP_ID_SER_NUM: length = DAP_GetSerNumString((char *)info); break; case DAP_ID_DAP_FW_VER: length = (uint8_t)sizeof(DAP_FW_Ver); memcpy(info, DAP_FW_Ver, length); break; case DAP_ID_DEVICE_VENDOR: length = DAP_GetTargetDeviceVendorString((char *)info); break; case DAP_ID_DEVICE_NAME: length = DAP_GetTargetDeviceNameString((char *)info); break; case DAP_ID_BOARD_VENDOR: length = DAP_GetTargetBoardVendorString((char *)info); break; case DAP_ID_BOARD_NAME: length = DAP_GetTargetBoardNameString((char *)info); break; case DAP_ID_PRODUCT_FW_VER: length = DAP_GetProductFirmwareVersionString((char *)info); break; case DAP_ID_CAPABILITIES: info[0] = ((DAP_SWD != 0) ? (1U << 0) : 0U) | ((DAP_JTAG != 0) ? (1U << 1) : 0U) | ((SWO_UART != 0) ? (1U << 2) : 0U) | ((SWO_MANCHESTER != 0) ? (1U << 3) : 0U) | /* Atomic Commands */ (1U << 4) | ((TIMESTAMP_CLOCK != 0U) ? (1U << 5) : 0U) | ((SWO_STREAM != 0U) ? (1U << 6) : 0U) | ((DAP_UART != 0U) ? (1U << 7) : 0U); info[1] = ((DAP_UART_USB_COM_PORT != 0) ? (1U << 0) : 0U); length = 2U; break; case DAP_ID_TIMESTAMP_CLOCK: #if (TIMESTAMP_CLOCK != 0U) info[0] = (uint8_t)(TIMESTAMP_CLOCK >> 0); info[1] = (uint8_t)(TIMESTAMP_CLOCK >> 8); info[2] = (uint8_t)(TIMESTAMP_CLOCK >> 16); info[3] = (uint8_t)(TIMESTAMP_CLOCK >> 24); length = 4U; #endif break; case DAP_ID_UART_RX_BUFFER_SIZE: #if (DAP_UART != 0) info[0] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 0); info[1] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 8); info[2] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 16); info[3] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 24); length = 4U; #endif break; case DAP_ID_UART_TX_BUFFER_SIZE: #if (DAP_UART != 0) info[0] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 0); info[1] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 8); info[2] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 16); info[3] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 24); length = 4U; #endif break; case DAP_ID_SWO_BUFFER_SIZE: #if ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) info[0] = (uint8_t)(SWO_BUFFER_SIZE >> 0); info[1] = (uint8_t)(SWO_BUFFER_SIZE >> 8); info[2] = (uint8_t)(SWO_BUFFER_SIZE >> 16); info[3] = (uint8_t)(SWO_BUFFER_SIZE >> 24); length = 4U; #endif break; case DAP_ID_PACKET_SIZE: info[0] = (uint8_t)(DAP_PACKET_SIZE >> 0); info[1] = (uint8_t)(DAP_PACKET_SIZE >> 8); length = 2U; break; case DAP_ID_PACKET_COUNT: info[0] = DAP_PACKET_COUNT; length = 1U; break; default: break; } return (length); } // Delay for specified time // delay: delay time in ms void Delayms(uint32_t delay) { delay *= ((CPU_CLOCK/1000U) + (DELAY_SLOW_CYCLES-1U)) / DELAY_SLOW_CYCLES; PIN_DELAY_SLOW(delay); } // Process Delay command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_Delay(const uint8_t *request, uint8_t *response) { uint32_t delay; delay = (uint32_t)(*(request+0)) | (uint32_t)(*(request+1) << 8); delay *= ((CPU_CLOCK/1000000U) + (DELAY_SLOW_CYCLES-1U)) / DELAY_SLOW_CYCLES; PIN_DELAY_SLOW(delay); *response = DAP_OK; return ((2U << 16) | 1U); } // Process Host Status command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_HostStatus(const uint8_t *request, uint8_t *response) { switch (*request) { case DAP_DEBUGGER_CONNECTED: LED_CONNECTED_OUT((*(request+1) & 1U)); break; case DAP_TARGET_RUNNING: LED_RUNNING_OUT((*(request+1) & 1U)); break; default: *response = DAP_ERROR; return ((2U << 16) | 1U); } *response = DAP_OK; return ((2U << 16) | 1U); } // Process Connect command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_Connect(const uint8_t *request, uint8_t *response) { uint32_t port; if (*request == DAP_PORT_AUTODETECT) { port = DAP_DEFAULT_PORT; } else { port = *request; } switch (port) { #if (DAP_SWD != 0) case DAP_PORT_SWD: DAP_Data.debug_port = DAP_PORT_SWD; PORT_SWD_SETUP(); break; #endif #if (DAP_JTAG != 0) case DAP_PORT_JTAG: DAP_Data.debug_port = DAP_PORT_JTAG; PORT_JTAG_SETUP(); break; #endif default: port = DAP_PORT_DISABLED; break; } *response = (uint8_t)port; return ((1U << 16) | 1U); } // Process Disconnect command and prepare response // response: pointer to response data // return: number of bytes in response static uint32_t DAP_Disconnect(uint8_t *response) { DAP_Data.debug_port = DAP_PORT_DISABLED; PORT_OFF(); *response = DAP_OK; return (1U); } // Process Reset Target command and prepare response // response: pointer to response data // return: number of bytes in response static uint32_t DAP_ResetTarget(uint8_t *response) { *(response+1) = RESET_TARGET(); *(response+0) = DAP_OK; return (2U); } // Process SWJ Pins command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_SWJ_Pins(const uint8_t *request, uint8_t *response) { #if ((DAP_SWD != 0) || (DAP_JTAG != 0)) uint32_t value; uint32_t select; uint32_t wait; uint32_t timestamp; value = (uint32_t) *(request+0); select = (uint32_t) *(request+1); wait = (uint32_t)(*(request+2) << 0) | (uint32_t)(*(request+3) << 8) | (uint32_t)(*(request+4) << 16) | (uint32_t)(*(request+5) << 24); if ((select & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) { if ((value & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) { PIN_SWCLK_TCK_SET(); } else { PIN_SWCLK_TCK_CLR(); } } if ((select & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) { if ((value & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) { PIN_SWDIO_TMS_SET(); } else { PIN_SWDIO_TMS_CLR(); } } if ((select & (1U << DAP_SWJ_TDI)) != 0U) { PIN_TDI_OUT(value >> DAP_SWJ_TDI); } if ((select & (1U << DAP_SWJ_nTRST)) != 0U) { PIN_nTRST_OUT(value >> DAP_SWJ_nTRST); } if ((select & (1U << DAP_SWJ_nRESET)) != 0U){ PIN_nRESET_OUT(value >> DAP_SWJ_nRESET); } if (wait != 0U) { #if (TIMESTAMP_CLOCK != 0U) if (wait > 3000000U) { wait = 3000000U; } #if (TIMESTAMP_CLOCK >= 1000000U) wait *= TIMESTAMP_CLOCK / 1000000U; #else wait /= 1000000U / TIMESTAMP_CLOCK; #endif #else wait = 1U; #endif timestamp = TIMESTAMP_GET(); do { if ((select & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) { if ((value >> DAP_SWJ_SWCLK_TCK) ^ PIN_SWCLK_TCK_IN()) { continue; } } if ((select & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) { if ((value >> DAP_SWJ_SWDIO_TMS) ^ PIN_SWDIO_TMS_IN()) { continue; } } if ((select & (1U << DAP_SWJ_TDI)) != 0U) { if ((value >> DAP_SWJ_TDI) ^ PIN_TDI_IN()) { continue; } } if ((select & (1U << DAP_SWJ_nTRST)) != 0U) { if ((value >> DAP_SWJ_nTRST) ^ PIN_nTRST_IN()) { continue; } } if ((select & (1U << DAP_SWJ_nRESET)) != 0U) { if ((value >> DAP_SWJ_nRESET) ^ PIN_nRESET_IN()) { continue; } } break; } while ((TIMESTAMP_GET() - timestamp) < wait); } value = (PIN_SWCLK_TCK_IN() << DAP_SWJ_SWCLK_TCK) | (PIN_SWDIO_TMS_IN() << DAP_SWJ_SWDIO_TMS) | (PIN_TDI_IN() << DAP_SWJ_TDI) | (PIN_TDO_IN() << DAP_SWJ_TDO) | (PIN_nTRST_IN() << DAP_SWJ_nTRST) | (PIN_nRESET_IN() << DAP_SWJ_nRESET); *response = (uint8_t)value; #else *response = 0U; #endif return ((6U << 16) | 1U); } // Process SWJ Clock command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_SWJ_Clock(const uint8_t *request, uint8_t *response) { #if ((DAP_SWD != 0) || (DAP_JTAG != 0)) uint32_t clock; uint32_t delay; clock = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); if (clock == 0U) { *response = DAP_ERROR; return ((4U << 16) | 1U); } Set_Clock_Delay(clock); *response = DAP_OK; #else *response = DAP_ERROR; #endif return ((4U << 16) | 1U); } // Process SWJ Sequence command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_SWJ_Sequence(const uint8_t *request, uint8_t *response) { uint32_t count; count = *request++; if (count == 0U) { count = 256U; } #if ((DAP_SWD != 0) || (DAP_JTAG != 0)) SWJ_Sequence(count, request); *response = DAP_OK; #else *response = DAP_ERROR; #endif count = (count + 7U) >> 3; return (((count + 1U) << 16) | 1U); } // Process SWD Configure command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_SWD_Configure(const uint8_t *request, uint8_t *response) { #if (DAP_SWD != 0) uint8_t value; value = *request; DAP_Data.swd_conf.turnaround = (value & 0x03U) + 1U; DAP_Data.swd_conf.data_phase = (value & 0x04U) ? 1U : 0U; *response = DAP_OK; #else *response = DAP_ERROR; #endif return ((1U << 16) | 1U); } // Process SWD Sequence command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_SWD_Sequence(const uint8_t *request, uint8_t *response) { uint32_t sequence_info; uint32_t sequence_count; uint32_t request_count; uint32_t response_count; uint32_t count; #if (DAP_SWD != 0) *response++ = DAP_OK; #else *response++ = DAP_ERROR; #endif request_count = 1U; response_count = 1U; sequence_count = *request++; while (sequence_count--) { sequence_info = *request++; count = sequence_info & SWD_SEQUENCE_CLK; if (count == 0U) { count = 64U; } count = (count + 7U) / 8U; #if (DAP_SWD != 0) if ((sequence_info & SWD_SEQUENCE_DIN) != 0U) { PIN_SWDIO_OUT_DISABLE(); } else { PIN_SWDIO_OUT_ENABLE(); } SWD_Sequence(sequence_info, request, response); if (sequence_count == 0U) { PIN_SWDIO_OUT_ENABLE(); } #endif if ((sequence_info & SWD_SEQUENCE_DIN) != 0U) { request_count++; #if (DAP_SWD != 0) response += count; response_count += count; #endif } else { request += count; request_count += count + 1U; } } return ((request_count << 16) | response_count); } // Process JTAG Sequence command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_JTAG_Sequence(const uint8_t *request, uint8_t *response) { uint32_t sequence_info; uint32_t sequence_count; uint32_t request_count; uint32_t response_count; uint32_t count; #if (DAP_JTAG != 0) *response++ = DAP_OK; #else *response++ = DAP_ERROR; #endif request_count = 1U; response_count = 1U; sequence_count = *request++; while (sequence_count--) { sequence_info = *request++; count = sequence_info & JTAG_SEQUENCE_TCK; if (count == 0U) { count = 64U; } count = (count + 7U) / 8U; #if (DAP_JTAG != 0) JTAG_Sequence(sequence_info, request, response); #endif request += count; request_count += count + 1U; #if (DAP_JTAG != 0) if ((sequence_info & JTAG_SEQUENCE_TDO) != 0U) { response += count; response_count += count; } #endif } return ((request_count << 16) | response_count); } // Process JTAG Configure command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_JTAG_Configure(const uint8_t *request, uint8_t *response) { uint32_t count; #if (DAP_JTAG != 0) uint32_t length; uint32_t bits; uint32_t n; count = *request++; DAP_Data.jtag_dev.count = (uint8_t)count; bits = 0U; for (n = 0U; n < count; n++) { length = *request++; DAP_Data.jtag_dev.ir_length[n] = (uint8_t)length; DAP_Data.jtag_dev.ir_before[n] = (uint16_t)bits; bits += length; } for (n = 0U; n < count; n++) { bits -= DAP_Data.jtag_dev.ir_length[n]; DAP_Data.jtag_dev.ir_after[n] = (uint16_t)bits; } *response = DAP_OK; #else count = *request; *response = DAP_ERROR; #endif return (((count + 1U) << 16) | 1U); } // Process JTAG IDCODE command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_JTAG_IDCode(const uint8_t *request, uint8_t *response) { #if (DAP_JTAG != 0) uint32_t data; if (DAP_Data.debug_port != DAP_PORT_JTAG) { goto id_error; } // Device index (JTAP TAP) DAP_Data.jtag_dev.index = *request; if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) { goto id_error; } // Select JTAG chain JTAG_IR(JTAG_IDCODE); // Read IDCODE register data = JTAG_ReadIDCode(); // Store Data *(response+0) = DAP_OK; *(response+1) = (uint8_t)(data >> 0); *(response+2) = (uint8_t)(data >> 8); *(response+3) = (uint8_t)(data >> 16); *(response+4) = (uint8_t)(data >> 24); return ((1U << 16) | 5U); id_error: #endif *response = DAP_ERROR; return ((1U << 16) | 1U); } // Process Transfer Configure command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_TransferConfigure(const uint8_t *request, uint8_t *response) { DAP_Data.transfer.idle_cycles = *(request+0); DAP_Data.transfer.retry_count = (uint16_t) *(request+1) | (uint16_t)(*(request+2) << 8); DAP_Data.transfer.match_retry = (uint16_t) *(request+3) | (uint16_t)(*(request+4) << 8); *response = DAP_OK; return ((5U << 16) | 1U); } // Process SWD Transfer command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) #if (DAP_SWD != 0) static uint32_t DAP_SWD_Transfer(const uint8_t *request, uint8_t *response) { const uint8_t *request_head; uint32_t request_count; uint32_t request_value; uint8_t *response_head; uint32_t response_count; uint32_t response_value; uint32_t post_read; uint32_t check_write; uint32_t match_value; uint32_t match_retry; uint32_t retry; uint32_t data; #if (TIMESTAMP_CLOCK != 0U) uint32_t timestamp; #endif request_head = request; response_count = 0U; response_value = 0U; response_head = response; response += 2; DAP_TransferAbort = 0U; post_read = 0U; check_write = 0U; request++; // Ignore DAP index request_count = *request++; for (; request_count != 0U; request_count--) { request_value = *request++; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register if (post_read) { // Read was posted before retry = DAP_Data.transfer.retry_count; if ((request_value & (DAP_TRANSFER_APnDP | DAP_TRANSFER_MATCH_VALUE)) == DAP_TRANSFER_APnDP) { // Read previous AP data and post next AP read do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } else { // Read previous AP data do { response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); post_read = 0U; } if (response_value != DAP_TRANSFER_OK) { break; } // Store previous AP data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); #if (TIMESTAMP_CLOCK != 0U) if (post_read) { // Store Timestamp of next AP read if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } } #endif } if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) { // Read with value match match_value = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; match_retry = DAP_Data.transfer.match_retry; if ((request_value & DAP_TRANSFER_APnDP) != 0U) { // Post AP read retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } } do { // Read register until its value matches or retry counter expires retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } } while (((data & DAP_Data.transfer.match_mask) != match_value) && match_retry-- && !DAP_TransferAbort); if ((data & DAP_Data.transfer.match_mask) != match_value) { response_value |= DAP_TRANSFER_MISMATCH; } if (response_value != DAP_TRANSFER_OK) { break; } } else { // Normal read retry = DAP_Data.transfer.retry_count; if ((request_value & DAP_TRANSFER_APnDP) != 0U) { // Read AP register if (post_read == 0U) { // Post AP read do { response_value = SWD_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } #if (TIMESTAMP_CLOCK != 0U) // Store Timestamp if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } #endif post_read = 1U; } } else { // Read DP register do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } #if (TIMESTAMP_CLOCK != 0U) // Store Timestamp if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } #endif // Store data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); } } check_write = 0U; } else { // Write register if (post_read) { // Read previous data retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } // Store previous data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); post_read = 0U; } // Load data data = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; if ((request_value & DAP_TRANSFER_MATCH_MASK) != 0U) { // Write match mask DAP_Data.transfer.match_mask = data; response_value = DAP_TRANSFER_OK; } else { // Write DP/AP register retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } #if (TIMESTAMP_CLOCK != 0U) // Store Timestamp if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } #endif check_write = 1U; } } response_count++; if (DAP_TransferAbort) { break; } } for (; request_count != 0U; request_count--) { // Process canceled requests request_value = *request++; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) { // Read with value match request += 4; } } else { // Write register request += 4; } } if (response_value == DAP_TRANSFER_OK) { if (post_read) { // Read previous data retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } // Store previous data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); } else if (check_write) { // Check last write retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } } end: *(response_head+0) = (uint8_t)response_count; *(response_head+1) = (uint8_t)response_value; return (((uint32_t)(request - request_head) << 16) | (uint32_t)(response - response_head)); } #endif // Process JTAG Transfer command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) #if (DAP_JTAG != 0) static uint32_t DAP_JTAG_Transfer(const uint8_t *request, uint8_t *response) { const uint8_t *request_head; uint32_t request_count; uint32_t request_value; uint32_t request_ir; uint8_t *response_head; uint32_t response_count; uint32_t response_value; uint32_t post_read; uint32_t match_value; uint32_t match_retry; uint32_t retry; uint32_t data; uint32_t ir; #if (TIMESTAMP_CLOCK != 0U) uint32_t timestamp; #endif request_head = request; response_count = 0U; response_value = 0U; response_head = response; response += 2; DAP_TransferAbort = 0U; ir = 0U; post_read = 0U; // Device index (JTAP TAP) DAP_Data.jtag_dev.index = *request++; if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) { goto end; } request_count = *request++; for (; request_count != 0U; request_count--) { request_value = *request++; request_ir = (request_value & DAP_TRANSFER_APnDP) ? JTAG_APACC : JTAG_DPACC; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register if (post_read) { // Read was posted before retry = DAP_Data.transfer.retry_count; if ((ir == request_ir) && ((request_value & DAP_TRANSFER_MATCH_VALUE) == 0U)) { // Read previous data and post next read do { response_value = JTAG_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } else { // Select JTAG chain if (ir != JTAG_DPACC) { ir = JTAG_DPACC; JTAG_IR(ir); } // Read previous data do { response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); post_read = 0U; } if (response_value != DAP_TRANSFER_OK) { break; } // Store previous data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); #if (TIMESTAMP_CLOCK != 0U) if (post_read) { // Store Timestamp of next AP read if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } } #endif } if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) { // Read with value match match_value = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; match_retry = DAP_Data.transfer.match_retry; // Select JTAG chain if (ir != request_ir) { ir = request_ir; JTAG_IR(ir); } // Post DP/AP read retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } do { // Read register until its value matches or retry counter expires retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } } while (((data & DAP_Data.transfer.match_mask) != match_value) && match_retry-- && !DAP_TransferAbort); if ((data & DAP_Data.transfer.match_mask) != match_value) { response_value |= DAP_TRANSFER_MISMATCH; } if (response_value != DAP_TRANSFER_OK) { break; } } else { // Normal read if (post_read == 0U) { // Select JTAG chain if (ir != request_ir) { ir = request_ir; JTAG_IR(ir); } // Post DP/AP read retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } #if (TIMESTAMP_CLOCK != 0U) // Store Timestamp if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } #endif post_read = 1U; } } } else { // Write register if (post_read) { // Select JTAG chain if (ir != JTAG_DPACC) { ir = JTAG_DPACC; JTAG_IR(ir); } // Read previous data retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } // Store previous data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); post_read = 0U; } // Load data data = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; if ((request_value & DAP_TRANSFER_MATCH_MASK) != 0U) { // Write match mask DAP_Data.transfer.match_mask = data; response_value = DAP_TRANSFER_OK; } else { // Select JTAG chain if (ir != request_ir) { ir = request_ir; JTAG_IR(ir); } // Write DP/AP register retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { break; } #if (TIMESTAMP_CLOCK != 0U) // Store Timestamp if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) { timestamp = DAP_Data.timestamp; *response++ = (uint8_t) timestamp; *response++ = (uint8_t)(timestamp >> 8); *response++ = (uint8_t)(timestamp >> 16); *response++ = (uint8_t)(timestamp >> 24); } #endif } } response_count++; if (DAP_TransferAbort) { break; } } for (; request_count != 0U; request_count--) { // Process canceled requests request_value = *request++; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) { // Read with value match request += 4; } } else { // Write register request += 4; } } if (response_value == DAP_TRANSFER_OK) { // Select JTAG chain if (ir != JTAG_DPACC) { ir = JTAG_DPACC; JTAG_IR(ir); } if (post_read) { // Read previous data retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } // Store previous data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); } else { // Check last write retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } } end: *(response_head+0) = (uint8_t)response_count; *(response_head+1) = (uint8_t)response_value; return (((uint32_t)(request - request_head) << 16) | (uint32_t)(response - response_head)); } #endif // Process Dummy Transfer command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_Dummy_Transfer(const uint8_t *request, uint8_t *response) { const uint8_t *request_head; uint32_t request_count; uint32_t request_value; request_head = request; request++; // Ignore DAP index request_count = *request++; for (; request_count != 0U; request_count--) { // Process dummy requests request_value = *request++; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) { // Read with value match request += 4; } } else { // Write register request += 4; } } *(response+0) = 0U; // Response count *(response+1) = 0U; // Response value return (((uint32_t)(request - request_head) << 16) | 2U); } // Process Transfer command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_Transfer(const uint8_t *request, uint8_t *response) { uint32_t num; switch (DAP_Data.debug_port) { #if (DAP_SWD != 0) case DAP_PORT_SWD: num = DAP_SWD_Transfer(request, response); break; #endif #if (DAP_JTAG != 0) case DAP_PORT_JTAG: num = DAP_JTAG_Transfer(request, response); break; #endif default: num = DAP_Dummy_Transfer(request, response); break; } return (num); } // Process SWD Transfer Block command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response #if (DAP_SWD != 0) static uint32_t DAP_SWD_TransferBlock(const uint8_t *request, uint8_t *response) { uint32_t request_count; uint32_t request_value; uint32_t response_count; uint32_t response_value; uint8_t *response_head; uint32_t retry; uint32_t data; response_count = 0U; response_value = 0U; response_head = response; response += 3; DAP_TransferAbort = 0U; request++; // Ignore DAP index request_count = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8); request += 2; if (request_count == 0U) { goto end; } request_value = *request++; if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Read register block if ((request_value & DAP_TRANSFER_APnDP) != 0U) { // Post AP read retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } } while (request_count--) { // Read DP/AP register if ((request_count == 0U) && ((request_value & DAP_TRANSFER_APnDP) != 0U)) { // Last AP read request_value = DP_RDBUFF | DAP_TRANSFER_RnW; } retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } // Store data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); response_count++; } } else { // Write register block while (request_count--) { // Load data data = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; // Write DP/AP register retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } response_count++; } // Check last write retry = DAP_Data.transfer.retry_count; do { response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } end: *(response_head+0) = (uint8_t)(response_count >> 0); *(response_head+1) = (uint8_t)(response_count >> 8); *(response_head+2) = (uint8_t) response_value; return ((uint32_t)(response - response_head)); } #endif // Process JTAG Transfer Block command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response #if (DAP_JTAG != 0) static uint32_t DAP_JTAG_TransferBlock(const uint8_t *request, uint8_t *response) { uint32_t request_count; uint32_t request_value; uint32_t response_count; uint32_t response_value; uint8_t *response_head; uint32_t retry; uint32_t data; uint32_t ir; response_count = 0U; response_value = 0U; response_head = response; response += 3; DAP_TransferAbort = 0U; // Device index (JTAP TAP) DAP_Data.jtag_dev.index = *request++; if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) { goto end; } request_count = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8); request += 2; if (request_count == 0U) { goto end; } request_value = *request++; // Select JTAG chain ir = (request_value & DAP_TRANSFER_APnDP) ? JTAG_APACC : JTAG_DPACC; JTAG_IR(ir); if ((request_value & DAP_TRANSFER_RnW) != 0U) { // Post read retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } // Read register block while (request_count--) { // Read DP/AP register if (request_count == 0U) { // Last read if (ir != JTAG_DPACC) { JTAG_IR(JTAG_DPACC); } request_value = DP_RDBUFF | DAP_TRANSFER_RnW; } retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } // Store data *response++ = (uint8_t) data; *response++ = (uint8_t)(data >> 8); *response++ = (uint8_t)(data >> 16); *response++ = (uint8_t)(data >> 24); response_count++; } } else { // Write register block while (request_count--) { // Load data data = (uint32_t)(*(request+0) << 0) | (uint32_t)(*(request+1) << 8) | (uint32_t)(*(request+2) << 16) | (uint32_t)(*(request+3) << 24); request += 4; // Write DP/AP register retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(request_value, &data); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); if (response_value != DAP_TRANSFER_OK) { goto end; } response_count++; } // Check last write if (ir != JTAG_DPACC) { JTAG_IR(JTAG_DPACC); } retry = DAP_Data.transfer.retry_count; do { response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL); } while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort); } end: *(response_head+0) = (uint8_t)(response_count >> 0); *(response_head+1) = (uint8_t)(response_count >> 8); *(response_head+2) = (uint8_t) response_value; return ((uint32_t)(response - response_head)); } #endif // Process Transfer Block command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_TransferBlock(const uint8_t *request, uint8_t *response) { uint32_t num; switch (DAP_Data.debug_port) { #if (DAP_SWD != 0) case DAP_PORT_SWD: num = DAP_SWD_TransferBlock (request, response); break; #endif #if (DAP_JTAG != 0) case DAP_PORT_JTAG: num = DAP_JTAG_TransferBlock(request, response); break; #endif default: *(response+0) = 0U; // Response count [7:0] *(response+1) = 0U; // Response count[15:8] *(response+2) = 0U; // Response value num = 3U; break; } if ((*(request+3) & DAP_TRANSFER_RnW) != 0U) { // Read register block num |= 4U << 16; } else { // Write register block num |= (4U + (((uint32_t)(*(request+1)) | (uint32_t)(*(request+2) << 8)) * 4)) << 16; } return (num); } // Process SWD Write ABORT command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response #if (DAP_SWD != 0) static uint32_t DAP_SWD_WriteAbort(const uint8_t *request, uint8_t *response) { uint32_t data; // Load data (Ignore DAP index) data = (uint32_t)(*(request+1) << 0) | (uint32_t)(*(request+2) << 8) | (uint32_t)(*(request+3) << 16) | (uint32_t)(*(request+4) << 24); // Write Abort register SWD_Transfer(DP_ABORT, &data); *response = DAP_OK; return (1U); } #endif // Process JTAG Write ABORT command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response #if (DAP_JTAG != 0) static uint32_t DAP_JTAG_WriteAbort(const uint8_t *request, uint8_t *response) { uint32_t data; // Device index (JTAP TAP) DAP_Data.jtag_dev.index = *request; if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) { *response = DAP_ERROR; return (1U); } // Select JTAG chain JTAG_IR(JTAG_ABORT); // Load data data = (uint32_t)(*(request+1) << 0) | (uint32_t)(*(request+2) << 8) | (uint32_t)(*(request+3) << 16) | (uint32_t)(*(request+4) << 24); // Write Abort register JTAG_WriteAbort(data); *response = DAP_OK; return (1U); } #endif // Process Write ABORT command and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) static uint32_t DAP_WriteAbort(const uint8_t *request, uint8_t *response) { uint32_t num; switch (DAP_Data.debug_port) { #if (DAP_SWD != 0) case DAP_PORT_SWD: num = DAP_SWD_WriteAbort (request, response); break; #endif #if (DAP_JTAG != 0) case DAP_PORT_JTAG: num = DAP_JTAG_WriteAbort(request, response); break; #endif default: *response = DAP_ERROR; num = 1U; break; } return ((5U << 16) | num); } // Process DAP Vendor command request and prepare response // Default function (can be overridden) // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) __WEAK uint32_t DAP_ProcessVendorCommand(const uint8_t *request, uint8_t *response) { (void)request; *response = ID_DAP_Invalid; return ((1U << 16) | 1U); } // Process DAP command request and prepare response // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t DAP_ProcessCommand(const uint8_t *request, uint8_t *response) { uint32_t num; if ((*request >= ID_DAP_Vendor0) && (*request <= ID_DAP_Vendor31)) { return DAP_ProcessVendorCommand(request, response); } *response++ = *request; switch (*request++) { case ID_DAP_Info: num = DAP_Info(*request, response+1); *response = (uint8_t)num; return ((2U << 16) + 2U + num); case ID_DAP_HostStatus: num = DAP_HostStatus(request, response); break; case ID_DAP_Connect: num = DAP_Connect(request, response); break; case ID_DAP_Disconnect: num = DAP_Disconnect(response); break; case ID_DAP_Delay: num = DAP_Delay(request, response); break; case ID_DAP_ResetTarget: num = DAP_ResetTarget(response); break; case ID_DAP_SWJ_Pins: num = DAP_SWJ_Pins(request, response); break; case ID_DAP_SWJ_Clock: num = DAP_SWJ_Clock(request, response); break; case ID_DAP_SWJ_Sequence: num = DAP_SWJ_Sequence(request, response); break; case ID_DAP_SWD_Configure: num = DAP_SWD_Configure(request, response); break; case ID_DAP_SWD_Sequence: num = DAP_SWD_Sequence(request, response); break; case ID_DAP_JTAG_Sequence: num = DAP_JTAG_Sequence(request, response); break; case ID_DAP_JTAG_Configure: num = DAP_JTAG_Configure(request, response); break; case ID_DAP_JTAG_IDCODE: num = DAP_JTAG_IDCode(request, response); break; case ID_DAP_TransferConfigure: num = DAP_TransferConfigure(request, response); break; case ID_DAP_Transfer: num = DAP_Transfer(request, response); break; case ID_DAP_TransferBlock: num = DAP_TransferBlock(request, response); break; case ID_DAP_WriteABORT: num = DAP_WriteAbort(request, response); break; #if ((SWO_UART != 0) || (SWO_MANCHESTER != 0)) case ID_DAP_SWO_Transport: num = SWO_Transport(request, response); break; case ID_DAP_SWO_Mode: num = SWO_Mode(request, response); break; case ID_DAP_SWO_Baudrate: num = SWO_Baudrate(request, response); break; case ID_DAP_SWO_Control: num = SWO_Control(request, response); break; case ID_DAP_SWO_Status: num = SWO_Status(response); break; case ID_DAP_SWO_ExtendedStatus: num = SWO_ExtendedStatus(request, response); break; case ID_DAP_SWO_Data: num = SWO_Data(request, response); break; #endif #if (DAP_UART != 0) case ID_DAP_UART_Transport: num = UART_Transport(request, response); break; case ID_DAP_UART_Configure: num = UART_Configure(request, response); break; case ID_DAP_UART_Control: num = UART_Control(request, response); break; case ID_DAP_UART_Status: num = UART_Status(response); break; case ID_DAP_UART_Transfer: num = UART_Transfer(request, response); break; #endif default: *(response-1) = ID_DAP_Invalid; return ((1U << 16) | 1U); } return ((1U << 16) + 1U + num); } // Execute DAP command (process request and prepare response) // request: pointer to request data // response: pointer to response data // return: number of bytes in response (lower 16 bits) // number of bytes in request (upper 16 bits) uint32_t DAP_ExecuteCommand(const uint8_t *request, uint8_t *response) { uint32_t cnt, num, n; if (*request == ID_DAP_ExecuteCommands) { *response++ = *request++; cnt = *request++; *response++ = (uint8_t)cnt; num = (2U << 16) | 2U; while (cnt--) { n = DAP_ProcessCommand(request, response); num += n; request += (uint16_t)(n >> 16); response += (uint16_t) n; } return (num); } return DAP_ProcessCommand(request, response); } // Setup DAP void DAP_Setup(void) { // Default settings DAP_Data.debug_port = 0U; DAP_Data.transfer.idle_cycles = 0U; DAP_Data.transfer.retry_count = 100U; DAP_Data.transfer.match_retry = 0U; DAP_Data.transfer.match_mask = 0x00000000U; #if (DAP_SWD != 0) DAP_Data.swd_conf.turnaround = 1U; DAP_Data.swd_conf.data_phase = 0U; #endif #if (DAP_JTAG != 0) DAP_Data.jtag_dev.count = 0U; #endif // Sets DAP_Data.fast_clock and DAP_Data.clock_delay. Set_Clock_Delay(DAP_DEFAULT_SWJ_CLOCK); DAP_SETUP(); // Device specific setup }