/* * Copyright (C) 2010-2021 Arm Limited or its affiliates. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_avgpool_s8.c * Description: Pooling function implementations * * $Date: 01. March 2021 * $Revision: V.2.0.4 * * Target Processor: Cortex-M CPUs * * -------------------------------------------------------------------- */ #include "arm_nnfunctions.h" #include "arm_nnsupportfunctions.h" #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) static void scale_q31_to_q7_and_clamp(const q31_t *buffer, q7_t *target, int32_t length, const int32_t count, const int act_min, const int act_max) { const int half_count = count / 2; // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return; } for (int i = 0; i < length; i++) { int32_t sum = buffer[i] > 0 ? (buffer[i] + half_count) : (buffer[i] - half_count); sum = sum / count; sum = MAX(sum, act_min); sum = MIN(sum, act_max); target[i] = (q7_t)sum; } } #endif /** * @ingroup groupNN */ /** * @addtogroup Pooling * @{ */ /* * s8 average pooling function * * Refer to header file for details. * */ #if defined(ARM_MATH_MVEI) arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const q7_t *src, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, q7_t *dst) { (void)ctx; const int32_t input_y = input_dims->h; const int32_t input_x = input_dims->w; const int32_t output_y = output_dims->h; const int32_t output_x = output_dims->w; const int32_t stride_y = pool_params->stride.h; const int32_t stride_x = pool_params->stride.w; const int32_t kernel_y = filter_dims->h; const int32_t kernel_x = filter_dims->w; const int32_t pad_y = pool_params->padding.h; const int32_t pad_x = pool_params->padding.w; const int32_t act_min = pool_params->activation.min; const int32_t act_max = pool_params->activation.max; const int32_t ch_src = input_dims->c; int32_t i_x, i_y; int32_t k_x, k_y; for (i_y = 0; i_y < output_y; i_y++) { for (i_x = 0; i_x < output_x; i_x++) { int32_t k_y_start, k_y_end; int32_t k_x_start, k_x_end; int32_t chCnt; const int8_t *pTmp, *pTmpInner; int8_t *pDst; k_y_start = MAX(0, i_y * stride_y - pad_y); k_y_end = MIN(i_y * stride_y - pad_y + kernel_y, input_y); k_x_start = MAX(0, i_x * stride_x - pad_x); k_x_end = MIN(i_x * stride_x - pad_x + kernel_x, input_x); pTmp = src; pDst = &dst[ch_src * (i_x + i_y * output_x)]; chCnt = ch_src >> 4; while (chCnt > 0) { int32x4_t sumV1, sumV2, sumV3, sumV4; int8x16_t tempV; int16x8_t tempVLO, tempVHI; int32x4_t tempVLOLO, tempVLOHI, tempVHILO, tempVHIHI; int32_t count = 0; sumV1 = vdupq_n_s32(0); sumV2 = vdupq_n_s32(0); sumV3 = vdupq_n_s32(0); sumV4 = vdupq_n_s32(0); for (k_y = k_y_start; k_y < k_y_end; k_y++) { for (k_x = k_x_start; k_x < k_x_end; k_x++) { pTmpInner = pTmp + (ch_src * (k_x + k_y * input_x)); tempV = vldrbq_s8(pTmpInner); tempVLO = vmovlbq_s8(tempV); tempVHI = vmovltq_s8(tempV); tempVLOLO = vmovlbq_s16(tempVLO); tempVLOHI = vmovltq_s16(tempVLO); tempVHILO = vmovlbq_s16(tempVHI); tempVHIHI = vmovltq_s16(tempVHI); sumV1 = vaddq_s32(sumV1, tempVLOLO); sumV2 = vaddq_s32(sumV2, tempVLOHI); sumV3 = vaddq_s32(sumV3, tempVHILO); sumV4 = vaddq_s32(sumV4, tempVHIHI); count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_MATH_ARGUMENT_ERROR; } sumV1[0] = sumV1[0] > 0 ? (sumV1[0] + count / 2) / count : (sumV1[0] - count / 2) / count; sumV1[1] = sumV1[1] > 0 ? (sumV1[1] + count / 2) / count : (sumV1[1] - count / 2) / count; sumV1[2] = sumV1[2] > 0 ? (sumV1[2] + count / 2) / count : (sumV1[2] - count / 2) / count; sumV1[3] = sumV1[3] > 0 ? (sumV1[3] + count / 2) / count : (sumV1[3] - count / 2) / count; sumV2[0] = sumV2[0] > 0 ? (sumV2[0] + count / 2) / count : (sumV2[0] - count / 2) / count; sumV2[1] = sumV2[1] > 0 ? (sumV2[1] + count / 2) / count : (sumV2[1] - count / 2) / count; sumV2[2] = sumV2[2] > 0 ? (sumV2[2] + count / 2) / count : (sumV2[2] - count / 2) / count; sumV2[3] = sumV2[3] > 0 ? (sumV2[3] + count / 2) / count : (sumV2[3] - count / 2) / count; sumV3[0] = sumV3[0] > 0 ? (sumV3[0] + count / 2) / count : (sumV3[0] - count / 2) / count; sumV3[1] = sumV3[1] > 0 ? (sumV3[1] + count / 2) / count : (sumV3[1] - count / 2) / count; sumV3[2] = sumV3[2] > 0 ? (sumV3[2] + count / 2) / count : (sumV3[2] - count / 2) / count; sumV3[3] = sumV3[3] > 0 ? (sumV3[3] + count / 2) / count : (sumV3[3] - count / 2) / count; sumV4[0] = sumV4[0] > 0 ? (sumV4[0] + count / 2) / count : (sumV4[0] - count / 2) / count; sumV4[1] = sumV4[1] > 0 ? (sumV4[1] + count / 2) / count : (sumV4[1] - count / 2) / count; sumV4[2] = sumV4[2] > 0 ? (sumV4[2] + count / 2) / count : (sumV4[2] - count / 2) / count; sumV4[3] = sumV4[3] > 0 ? (sumV4[3] + count / 2) / count : (sumV4[3] - count / 2) / count; sumV1 = vmaxq_s32(sumV1, vdupq_n_s32(act_min)); sumV1 = vminq_s32(sumV1, vdupq_n_s32(act_max)); sumV2 = vmaxq_s32(sumV2, vdupq_n_s32(act_min)); sumV2 = vminq_s32(sumV2, vdupq_n_s32(act_max)); sumV3 = vmaxq_s32(sumV3, vdupq_n_s32(act_min)); sumV3 = vminq_s32(sumV3, vdupq_n_s32(act_max)); sumV4 = vmaxq_s32(sumV4, vdupq_n_s32(act_min)); sumV4 = vminq_s32(sumV4, vdupq_n_s32(act_max)); tempVLO = vmovnbq_s32(tempVLO, sumV1); tempVLO = vmovntq_s32(tempVLO, sumV2); tempVHI = vmovnbq_s32(tempVHI, sumV3); tempVHI = vmovntq_s32(tempVHI, sumV4); tempV = vmovnbq_s16(tempV, tempVLO); tempV = vmovntq_s16(tempV, tempVHI); vstrbq_s8(pDst, tempV); pDst += 16; chCnt--; pTmp += 16; } chCnt = ch_src & 0xF; while (chCnt > 0) { int32_t sum = 0; int32_t count = 0; for (k_y = k_y_start; k_y < k_y_end; k_y++) { for (k_x = k_x_start; k_x < k_x_end; k_x++) { sum += pTmp[ch_src * (k_x + k_y * input_x)]; count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_MATH_ARGUMENT_ERROR; } sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; sum = MAX(sum, act_min); sum = MIN(sum, act_max); *pDst++ = sum; chCnt--; pTmp++; } } } return ARM_MATH_SUCCESS; } #else arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const q7_t *src, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, q7_t *dst) { const int32_t input_y = input_dims->h; const int32_t input_x = input_dims->w; const int32_t output_y = output_dims->h; const int32_t output_x = output_dims->w; const int32_t stride_y = pool_params->stride.h; const int32_t stride_x = pool_params->stride.w; const int32_t kernel_y = filter_dims->h; const int32_t kernel_x = filter_dims->w; const int32_t pad_y = pool_params->padding.h; const int32_t pad_x = pool_params->padding.w; const int32_t act_min = pool_params->activation.min; const int32_t act_max = pool_params->activation.max; const int32_t ch_src = input_dims->c; if (ctx->buf == NULL && arm_avgpool_s8_get_buffer_size(output_dims->w, input_dims->c)) { return ARM_MATH_ARGUMENT_ERROR; } q31_t *buffer = (q31_t *)ctx->buf; #if defined(ARM_MATH_DSP) /* Run the following code for CPU's with DSP extension */ for (int i_y = 0, idx_y = -pad_y; i_y < output_y; idx_y += stride_y, i_y++) { for (int i_x = 0, idx_x = -pad_x; i_x < output_x; idx_x += stride_x, i_x++) { /* Condition for kernel start dimension: (base_idx_ + kernel__start) >= 0 */ const int32_t kernel_y_start = MAX(0, -idx_y); const int32_t kernel_x_start = MAX(0, -idx_x); /* Condition for kernel end dimension: (base_idx_ + kernel__end) < dim_src_ */ const int32_t kernel_y_end = MIN(kernel_y, input_y - idx_y); const int32_t kernel_x_end = MIN(kernel_x, input_x - idx_x); int count = 0; for (int k_y = kernel_y_start; k_y < kernel_y_end; k_y++) { for (int k_x = kernel_x_start; k_x < kernel_x_end; k_x++) { const q7_t *start = src + ch_src * (k_x + idx_x + (k_y + idx_y) * input_x); if (count == 0) { for (int i = 0; i < ch_src; i++) { buffer[i] = start[i]; } } else { for (int i = 0; i < ch_src; i++) { buffer[i] = __QADD(start[i], buffer[i]); } } count++; } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_MATH_ARGUMENT_ERROR; } scale_q31_to_q7_and_clamp(buffer, dst, ch_src, count, act_min, act_max); dst += ch_src; } } #else /* Reference C code adapted from CMSIS-NN arm_avepool_q7_HWC. */ (void)buffer; int16_t i_ch_in, i_x, i_y; int16_t k_x, k_y; for (i_y = 0; i_y < output_y; i_y++) { for (i_x = 0; i_x < output_x; i_x++) { for (i_ch_in = 0; i_ch_in < ch_src; i_ch_in++) { int sum = 0; int count = 0; for (k_y = i_y * stride_y - pad_y; k_y < i_y * stride_y - pad_y + kernel_y; k_y++) { for (k_x = i_x * stride_x - pad_x; k_x < i_x * stride_x - pad_x + kernel_x; k_x++) { if (k_y >= 0 && k_x >= 0 && k_y < input_y && k_x < input_x) { sum += src[i_ch_in + ch_src * (k_x + k_y * input_x)]; count++; } } } // Prevent static code issue DIVIDE_BY_ZERO. if (count == 0) { return ARM_MATH_ARGUMENT_ERROR; } sum = sum > 0 ? (sum + count / 2) / count : (sum - count / 2) / count; sum = MAX(sum, act_min); sum = MIN(sum, act_max); dst[i_ch_in + ch_src * (i_x + i_y * output_x)] = sum; } } } #endif return ARM_MATH_SUCCESS; } #endif /* ARM_MATH_MVEI */ int32_t arm_avgpool_s8_get_buffer_size(const int output_x, const int ch_src) { (void)output_x; #if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) return (ch_src * sizeof(int32_t)); #else (void)ch_src; return 0; #endif } /** * @} end of Pooling group */