/* * Copyright (C) 2010-2022 Arm Limited or its affiliates. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* ---------------------------------------------------------------------- * Project: CMSIS NN Library * Title: arm_nnfunctions.h * Description: Public header file for CMSIS NN Library * * $Date: 19 April 2022 * $Revision: V.9.0.0 * * Target Processor: Cortex-M CPUs * -------------------------------------------------------------------- */ /** \mainpage CMSIS NN Software Library * * Introduction * ------------ * * This user manual describes the CMSIS NN software library, * a collection of efficient neural network kernels developed to maximize the * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. * * The library is divided into a number of functions each covering a specific category: * - Convolution Functions * - Activation Functions * - Fully-connected Layer Functions * - SVDF Layer Functions * - Pooling Functions * - Softmax Functions * - Basic math Functions * * The library has separate functions for operating on different weight and activation data * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the * kernels are included in the function description. The implementation details are also * described in this paper [1]. * * Supported Processors * ------- * CMSIS-NN targets Cortex-M processors with typically three different implementations for each function. Each * targets a different group of processors. * - Processors without SIMD capability (e.g, Cortex-M0) * - Processors with DSP extention (e.g Cortex-M4) * - Processors with MVE extension (e.g Cortex-M55) * The right implementation is picked through feature flags and the user usually does not have to explicit set it. * * Function Classification * -------- * The functions can be classified into two segments * - Legacy functions supporting ARM's internal symmetric quantization(8 bits). * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits). * * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there. * The article in [2] describes in detail how to run a network using the legacy functions. * * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL * micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run * a TensorFlow Lite model using optimized CMSIS-NN kernels. * * Block Diagram * -------- * \image html CMSIS-NN-OVERVIEW.PNG * * Examples * -------- * * The library ships with a number of examples which demonstrate how to use the library functions. * * Pre-processor Macros * ------------ * * Each library project have different pre-processor macros. * * - ARM_MATH_DSP: * * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension). * * - ARM_MATH_MVEI: * * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension. * - ARM_MATH_AUTOVECTORIZE * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline * assembly. It does not affect functions that use C or intrinsics. * - ARM_MATH_BIG_ENDIAN: * * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy * functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for * little endian targets. * * - ARM_NN_TRUNCATE: * * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. * * * Copyright Notice * ------------ * * Copyright (C) 2010-2019 Arm Limited. All rights reserved. * * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 * * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN * https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page * [3] https://www.tensorflow.org/lite/microcontrollers/library * * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis */ /** * @defgroup groupNN Neural Network Functions * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support * TensorFlow Lite framework. */ #ifndef _ARM_NNFUNCTIONS_H #define _ARM_NNFUNCTIONS_H #include "arm_nn_math_types.h" #include "arm_nn_types.h" #define USE_INTRINSIC //#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ #ifdef __cplusplus extern "C" { #endif /** * @brief Struct for specifying activation function types * */ typedef enum { ARM_SIGMOID = 0, /**< Sigmoid activation function */ ARM_TANH = 1, /**< Tanh activation function */ } arm_nn_activation_type; /** * @defgroup NNConv Convolution Functions * * Collection of convolution, depthwise convolution functions and their variants. * * The convolution is implemented in 2 steps: im2col and GEMM * * im2col is a process of converting each patch of image data into * a column. After im2col, the convolution is computed as matrix-matrix * multiplication. * * To reduce the memory footprint, the im2col is performed partially. * Each iteration, only a few column (i.e., patches) are generated and * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. * */ /** * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn * to perform the convolution. * * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * Range of conv_params->input_offset : [-127, 128] * Range of conv_params->output_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the * spatial filter dimensions * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int8 * * @return The function returns either * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, * ARM_MATH_SUCCESS on successful completion. * */ arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for arm_convolve_wrapper_s8 * * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * Range of conv_params->input_offset : [-127, 128] * Range of conv_params->output_offset : [-128, 127] * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial * filter dimensions * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params, const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims); /** * @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in cmsis-nn * to perform the convolution. * * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * conv_params->input_offset : Not used * conv_params->output_offset : Not used * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int16 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the * spatial filter dimensions * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Bias data pointer. Data type: int64 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int16 * * @return The function returns either * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, * ARM_MATH_SUCCESS on successful completion. * */ arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data); /** * @brief Get the required buffer size for arm_convolve_wrapper_s16 * * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * conv_params->input_offset : Not used * conv_params->output_offset : Not used * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial * filter dimensions * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params, const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims); /** * @brief Basic s8 convolution function * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_s8_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * Range of conv_params->input_offset : [-127, 128] * Range of conv_params->output_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the * spatial filter dimensions * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Optional bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int8 * @return The function returns ARM_MATH_SUCCESS * * @details * 1. Supported framework: TensorFlow Lite micro * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. * */ arm_status arm_convolve_s8(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for s8 convolution function * * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK * are the spatial filter dimensions * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Basic s16 convolution function * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_s16_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * conv_params->input_offset : Not used * conv_params->output_offset : Not used * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int16 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the * spatial filter dimensions * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Optional bias data pointer. Data type: int64 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int16 * @return The function returns ARM_MATH_SUCCESS * * @details * 1. Supported framework: TensorFlow Lite micro * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs. * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. * */ arm_status arm_convolve_s16(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data); /** * @brief Optimized s16 convolution function * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * conv_params->input_offset : Not used * conv_params->output_offset : Not used * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int16 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the * spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not exceed 512 * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Optional bias data pointer. Data type: int64 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int16 * @return The function returns ARM_MATH_SUCCESS * * @details * 1. Supported framework: TensorFlow Lite micro * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs. * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. * 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512. * */ arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data); /** * @brief Get the required buffer size for s16 convolution function * * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK * are the spatial filter dimensions * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Get the required buffer size for fast s16 convolution function * * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK * are the spatial filter dimensions * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Basic Q7 convolution function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Basic Q7 convolution function (non-square shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimension x * @param[in] dim_im_in_y input tensor dimension y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns ARM_MATH_SUCCESS */ arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB); /** * @brief Basic Q15 convolution function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast Q7 convolution function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 4 * ch_im_out is multiple of 2 */ arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast Q7 convolution function (non-sqaure shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimension x * @param[in] dim_im_in_y input tensor dimension y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 4 * ch_im_out is multiple of 2 */ arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimension x * @param[in] dim_im_in_y input tensor dimension y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, * ARM_MATH_SUCCESS on successful completion. * * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 * and dim_kernel_y=1). It can be used for * second half of MobileNets after depthwise separable convolution. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 4 * ch_im_out is multiple of 2 */ arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast s8 version for 1x1 convolution (non-square shape) * * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * Range of conv_params->input_offset : [-127, 128] * Range of conv_params->output_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN] * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Optional bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int8 * * @return The function returns either * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, * ARM_MATH_SUCCESS on successful completion. * * @details * - Supported framework : TensorFlow Lite Micro * - The following constrains on the arguments apply * -# input_dims->c is a multiple of 4 * -# conv_params->padding.w = conv_params->padding.h = 0 * -# conv_params->stride.w = conv_params->stride.h = 1 * */ arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for arm_convolve_1x1_s8_fast * * @param[in] input_dims Input (activation) dimensions * @return The function returns the required buffer size in bytes * */ int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims); /** * @brief 1xn convolution * * @param[in, out] ctx Function context that contains the additional buffer if required by the function. arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). * Range of conv_params->input_offset : [-127, 128] * Range of conv_params->output_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal * spatial filter dimension * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Optional bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[out] output_data Output data pointer. Data type: int8 * * @return The function returns either * ARM_MATH_SIZE_MISMATCH if argument constraints fail. or, * ARM_MATH_SUCCESS on successful completion. * * @details * - Supported framework : TensorFlow Lite Micro * - The following constrains on the arguments apply * -# input_dims->n equals 1 * -# ouput_dims->w is a multiple of 4 * -# Explicit constraints(since it is for 1xN convolution) * -## input_dims->h equals 1 * -## output_dims->h equals 1 * -## filter_dims->h equals 1 *@todo Remove constraint on output_dims->w to make the function generic. * */ arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx, const cmsis_nn_conv_params *conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required additional buffer size for 1xn convolution * * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the * horizontal spatial filter dimension * @return The function returns required buffer size(bytes) * */ int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @brief Q7 version of convolution for RGB image * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This kernel is written exclusively for convolution with ch_im_in * equals 3. This applies on the first layer of CNNs which has input * image with RGB format. */ arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast Q15 convolution function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 2 * ch_im_out is multiple of 2 * dim_im_out is a multiple of 2 */ arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Fast Q15 convolution function (non-sqaure shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimension x * @param[in] dim_im_in_y input tensor dimension y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding size x * @param[in] padding_y padding size y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * * Buffer size: * * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel * * bufferB size: 0 * * Input dimension constraints: * * ch_im_in is multiple of 2 * * ch_im_out is multipe of 2 * */ arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q15_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q15_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q15_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB); /** * @brief Q7 depthwise separable convolution function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 2 * ch_im_out is multiple of 2 */ arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out, q15_t *bufferA, q7_t *bufferB); /** * @brief Q7 depthwise separable convolution function (non-square shape) * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in_x input tensor dimension x * @param[in] dim_im_in_y input tensor dimension y * @param[in] ch_im_in number of input tensor channels * @param[in] wt pointer to kernel weights * @param[in] ch_im_out number of filters, i.e., output tensor channels * @param[in] dim_kernel_x filter kernel size x * @param[in] dim_kernel_y filter kernel size y * @param[in] padding_x padding sizes x * @param[in] padding_y padding sizes y * @param[in] stride_x convolution stride x * @param[in] stride_y convolution stride y * @param[in] bias pointer to bias * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in,out] Im_out pointer to output tensor * @param[in] dim_im_out_x output tensor dimension x * @param[in] dim_im_out_y output tensor dimension y * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] bufferB pointer to buffer space for output * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * This function is the version with full list of optimization tricks, but with * some contraints: * ch_im_in is multiple of 2 * ch_im_out is multiple of 2 */ arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in, const uint16_t dim_im_in_x, const uint16_t dim_im_in_y, const uint16_t ch_im_in, const q7_t *wt, const uint16_t ch_im_out, const uint16_t dim_kernel_x, const uint16_t dim_kernel_y, const uint16_t padding_x, const uint16_t padding_y, const uint16_t stride_x, const uint16_t stride_y, const q7_t *bias, const uint16_t bias_shift, const uint16_t out_shift, q7_t *Im_out, const uint16_t dim_im_out_x, const uint16_t dim_im_out_y, q15_t *bufferA, q7_t *bufferB); /** * @brief Wrapper function to pick the right optimized s8 depthwise convolution function * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if required. * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) * dw_conv_params->dilation is not used. * Range of dw_conv_params->input_offset : [-127, 128] * Range of dw_conv_params->output_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each * output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Batch argument N is not used and assumed to be 1. * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] * @param[in, out] output_data Output data pointer. Data type: int8 * @return The function returns * ARM_MATH_SUCCESS - Successful completion. * * @details * - Supported framework: TensorFlow Lite * - Picks one of the the following functions * -# arm_depthwise_conv_s8() * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only * -# arm_depthwise_conv_s8_opt() * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the * boundary. */ arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8() * * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) * dw_conv_params->dilation is not used. * Range of dw_conv_params->input_offset : [-127, 128] * Range of dw_conv_params->input_offset : [-128, 127] * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Batch argument N is not used and assumed to be 1. * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] * @return Size of additional memory required for optimizations in bytes. * */ int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims); /** * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * exists if additional memory is. * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) * dw_conv_params->dilation is not used. * Range of dw_conv_params->input_offset : [-127, 128] * Range of dw_conv_params->input_offset : [-128, 127] * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each * output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * Batch argument N is not used. * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[in, out] output_data Output data pointer. Data type: int8 * @return The function returns ARM_MATH_SUCCESS * * @details * - Supported framework: TensorFlow Lite * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. */ arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * exists if additional memory is. * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) * conv_params->input_offset : Not used * conv_params->output_offset : Not used * @param[in] quant_params Per-channel quantization info. * It contains the multiplier and shift values to be applied to each * output channel * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * Batch argument N is not used. * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * @param[in] bias_data Bias data pointer. Data type: int64 * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] * @param[in, out] output_data Output data pointer. Data type: int16 * @return The function returns ARM_MATH_SUCCESS * * @details * - Supported framework: TensorFlow Lite * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs. */ arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data); /** * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function * argument details. * * @return The function returns one of the following * ARM_MATH_SIZE_MISMATCH - Unsupported dimension of tensors * ARM_MATH_ARGUMENT_ERROR - Unsupported pad size along the x axis * ARM_MATH_SUCCESS - Successful operation * * @details * - Supported framework : TensorFlow Lite Micro * - The following constrains on the arguments apply * -# Number of input channel equals number of output channels * -# Filter height and width equals 3 * -# Padding along x is either 0 or 1. * */ arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel. * Refer arm_depthwise_conv_s8() for function argument details. * * @return The function returns one of the following * ARM_MATH_SIZE_MISMATCH - input channel != output channel or * ch_mult != 1 * ARM_MATH_SUCCESS - Successful operation * * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out * for the following if MVE optimizations(Arm Helium Technology) are used. * - Output shift * - Output multiplier * - Output bias * - kernel * @details * - Supported framework: TensorFlow Lite * - The following constrains on the arguments apply * -# Number of input channel equals number of output channels or ch_mult equals 1 * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. * - Reccomended when number of channels is 4 or greater. * */ arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx, const cmsis_nn_dw_conv_params *dw_conv_params, const cmsis_nn_per_channel_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for optimized s8 depthwise convolution * function with constraint that in_channel equals out_channel. * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN] * Batch argument N is not used. * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] * @return The function returns required buffer size in bytes * */ int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); /** * @defgroup FC Fully-connected Layer Functions * * Collection of fully-connected and matrix multiplication functions. * * Fully-connected layer is basically a matrix-vector multiplication * with bias. The matrix is the weights and the input/output vectors * are the activation values. Supported {weight, activation} precisions * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. * * Here we have two types of kernel functions. The basic function * implements the function using regular GEMV approach. The opt functions * operates with weights in interleaved formats. * */ /** *@brief Q7 basic fully-connected layer function *@param[in] pV pointer to input vector *@param[in] pM pointer to matrix weights *@param[in] dim_vec length of the vector *@param[in] num_of_rows number of rows in weight matrix *@param[in] bias_shift amount of left-shift for bias *@param[in] out_shift amount of right-shift for output *@param[in] bias pointer to bias *@param[in,out] pOut pointer to output vector *@param[in,out] vec_buffer pointer to buffer space for input *@return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_q7(const q7_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q7_t *pOut, q15_t *vec_buffer); /** * @brief Basic s8 Fully Connected function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] fc_params Fully Connected layer parameters. * Range of fc_params->input_offset : [-127, 128] * fc_params->filter_offset : 0 * Range of fc_params->output_offset : [-128, 127] * @param[in] quant_params Per-tensor quantization info. * It contains the multiplier and shift values to be applied to the output tensor. * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * Input dimension is taken as Nx(H * W * C_IN) * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C] * N : accumulation depth and equals (H * W * C_IN) from input_dims * C : output depth and equals C_OUT in output_dims * H & W : Not used * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * N, H, W : Not used * @param[in] bias_data Bias data pointer. Data type: int32 * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT] * N : Batches * C_OUT : Output depth * H & W : Not used. * @param[in, out] output_data Output data pointer. Data type: int8 * @return The function returns ARM_MATH_SUCCESS * * @details * - Supported framework: TensorFlow Lite * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. */ arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx, const cmsis_nn_fc_params *fc_params, const cmsis_nn_per_tensor_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int32_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for S8 basic fully-connected and * matrix multiplication layer function for TF Lite * @param[in] filter_dims dimension of filter * @return The function returns required buffer size in bytes * */ int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims); /** * @brief Basic s16 Fully Connected function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] fc_params Fully Connected layer parameters. * fc_params->input_offset : 0 * fc_params->filter_offset : 0 * fc_params->output_offset : 0 * @param[in] quant_params Per-tensor quantization info. * It contains the multiplier and shift values to be applied to the output tensor. * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] * Input dimension is taken as Nx(H * W * C_IN) * @param[in] input_data Input (activation) data pointer. Data type: int16 * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C] * N : accumulation depth and equals (H * W * C_IN) from input_dims * C : output depth and equals C_OUT in output_dims * H & W : Not used * @param[in] filter_data Filter data pointer. Data type: int8 * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] * N, H, W : Not used * @param[in] bias_data Bias data pointer. Data type: int64 * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT] * N : Batches * C_OUT : Output depth * H & W : Not used. * @param[in, out] output_data Output data pointer. Data type: int16 * @return The function returns ARM_MATH_SUCCESS * * @details * - Supported framework: TensorFlow Lite * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs. */ arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx, const cmsis_nn_fc_params *fc_params, const cmsis_nn_per_tensor_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input_data, const cmsis_nn_dims *filter_dims, const q7_t *filter_data, const cmsis_nn_dims *bias_dims, const int64_t *bias_data, const cmsis_nn_dims *output_dims, q15_t *output_data); /** * @brief Get the required buffer size for S16 basic fully-connected and * matrix multiplication layer function for TF Lite * @param[in] filter_dims dimension of filter * @return The function returns required buffer size in bytes * */ int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims); /** * @brief Q7 opt fully-connected layer function * @param[in] pV pointer to input vector * @param[in] pM pointer to matrix weights * @param[in] dim_vec length of the vector * @param[in] num_of_rows number of rows in weight matrix * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias pointer to bias * @param[in,out] pOut pointer to output vector * @param[in,out] vec_buffer pointer to buffer space for input * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_q7_opt(const q7_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q7_t *pOut, q15_t *vec_buffer); /** * @brief Q15 basic fully-connected layer function * @param[in] pV pointer to input vector * @param[in] pM pointer to matrix weights * @param[in] dim_vec length of the vector * @param[in] num_of_rows number of rows in weight matrix * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias pointer to bias * @param[in,out] pOut pointer to output vector * @param[in,out] vec_buffer pointer to buffer space for input * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_q15(const q15_t *pV, const q15_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q15_t *bias, q15_t *pOut, q15_t *vec_buffer); /** * @brief Q15 opt fully-connected layer function * @param[in] pV pointer to input vector * @param[in] pM pointer to matrix weights * @param[in] dim_vec length of the vector * @param[in] num_of_rows number of rows in weight matrix * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias pointer to bias * @param[in,out] pOut pointer to output vector * @param[in,out] vec_buffer pointer to buffer space for input * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_q15_opt(const q15_t *pV, const q15_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q15_t *bias, q15_t *pOut, q15_t *vec_buffer); /** * @brief Mixed Q15-Q7 fully-connected layer function * @param[in] pV pointer to input vector * @param[in] pM pointer to matrix weights * @param[in] dim_vec length of the vector * @param[in] num_of_rows number of rows in weight matrix * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias pointer to bias * @param[in,out] pOut pointer to output vector * @param[in,out] vec_buffer pointer to buffer space for input * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q15_t *pOut, q15_t *vec_buffer); /** * @brief Mixed Q15-Q7 opt fully-connected layer function * @param[in] pV pointer to input vector * @param[in] pM pointer to matrix weights * @param[in] dim_vec length of the vector * @param[in] num_of_rows number of rows in weight matrix * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias pointer to bias * @param[in,out] pOut pointer to output vector * @param[in,out] vec_buffer pointer to buffer space for input * @return The function returns ARM_MATH_SUCCESS * */ arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q15_t *pOut, q15_t *vec_buffer); /** * @brief Matrix-Multiplication Kernels for Convolution * * These functions are used within convolution layer functions for * matrix multiplication. * * The implementation is similar to CMSIS-DSP arm_mat_mult functions * with one Q7 and one Q15 operands. The Q15 operand is the im2col * output which is always with 2 columns. * */ /** * @brief Matrix-multiplication function for convolution * @param[in] pA pointer to operand A * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors * @param[in] ch_im_out numRow of A * @param[in] numCol_A numCol of A * @param[in] bias_shift amount of left-shift for bias * @param[in] out_shift amount of right-shift for output * @param[in] bias the bias * @param[in,out] pOut pointer to output * @return The function returns the incremented output pointer */ q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA, const q15_t *pInBuffer, const uint16_t ch_im_out, const uint16_t numCol_A, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q7_t *pOut); #ifdef __cplusplus } #endif /* * Other functions * These layers are typically not timing critical * Basic implementation is supported here */ #ifdef __cplusplus extern "C" { #endif /** * @defgroup BasicMath Basic math functions * * Elementwise add and multiplication functions. * */ /** * @brief s8 elementwise add of two vectors * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in] input_1_offset offset for input 1. Range: -127 to 128 * @param[in] input_1_mult multiplier for input 1 * @param[in] input_1_shift shift for input 1 * @param[in] input_2_offset offset for input 2. Range: -127 to 128 * @param[in] input_2_mult multiplier for input 2 * @param[in] input_2_shift shift for input 2 * @param[in] left_shift input left shift * @param[in,out] output pointer to output vector * @param[in] out_offset output offset. Range: -128 to 127 * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] out_activation_min minimum value to clamp output to. Min: -128 * @param[in] out_activation_max maximum value to clamp output to. Max: 127 * @param[in] block_size number of samples * @return The function returns ARM_MATH_SUCCESS */ arm_status arm_elementwise_add_s8(const int8_t *input_1_vect, const int8_t *input_2_vect, const int32_t input_1_offset, const int32_t input_1_mult, const int32_t input_1_shift, const int32_t input_2_offset, const int32_t input_2_mult, const int32_t input_2_shift, const int32_t left_shift, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t out_activation_min, const int32_t out_activation_max, const int32_t block_size); /** * @brief s16 elementwise add of two vectors * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in] input_1_offset offset for input 1. Not used. * @param[in] input_1_mult multiplier for input 1 * @param[in] input_1_shift shift for input 1 * @param[in] input_2_offset offset for input 2. Not used. * @param[in] input_2_mult multiplier for input 2 * @param[in] input_2_shift shift for input 2 * @param[in] left_shift input left shift * @param[in,out] output pointer to output vector * @param[in] out_offset output offset. Not used. * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] out_activation_min minimum value to clamp output to. Min: -32768 * @param[in] out_activation_max maximum value to clamp output to. Max: 32767 * @param[in] block_size number of samples * @return The function returns ARM_MATH_SUCCESS */ arm_status arm_elementwise_add_s16(const int16_t *input_1_vect, const int16_t *input_2_vect, const int32_t input_1_offset, const int32_t input_1_mult, const int32_t input_1_shift, const int32_t input_2_offset, const int32_t input_2_mult, const int32_t input_2_shift, const int32_t left_shift, int16_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t out_activation_min, const int32_t out_activation_max, const int32_t block_size); /** * @brief s8 elementwise multiplication * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in] input_1_offset offset for input 1. Range: -127 to 128 * @param[in] input_2_offset offset for input 2. Range: -127 to 128 * @param[in,out] output pointer to output vector * @param[in] out_offset output offset. Range: -128 to 127 * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] out_activation_min minimum value to clamp output to. Min: -128 * @param[in] out_activation_max maximum value to clamp output to. Max: 127 * @param[in] block_size number of samples * @return The function returns ARM_MATH_SUCCESS * * @details Supported framework: TensorFlow Lite micro */ arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect, const int8_t *input_2_vect, const int32_t input_1_offset, const int32_t input_2_offset, int8_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t out_activation_min, const int32_t out_activation_max, const int32_t block_size); /** * @brief s16 elementwise multiplication * @param[in] input_1_vect pointer to input vector 1 * @param[in] input_2_vect pointer to input vector 2 * @param[in] input_1_offset offset for input 1. Not used. * @param[in] input_2_offset offset for input 2. Not used. * @param[in,out] output pointer to output vector * @param[in] out_offset output offset. Not used. * @param[in] out_mult output multiplier * @param[in] out_shift output shift * @param[in] out_activation_min minimum value to clamp output to. Min: -32768 * @param[in] out_activation_max maximum value to clamp output to. Max: 32767 * @param[in] block_size number of samples * @return The function returns ARM_MATH_SUCCESS * * @details Supported framework: TensorFlow Lite micro */ arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect, const int16_t *input_2_vect, const int32_t input_1_offset, const int32_t input_2_offset, int16_t *output, const int32_t out_offset, const int32_t out_mult, const int32_t out_shift, const int32_t out_activation_min, const int32_t out_activation_max, const int32_t block_size); /** * @defgroup Acti Activation Functions * * Perform activation layers, including ReLU (Rectified Linear Unit), * sigmoid and tanh * */ /** * @brief Q7 RELU function * @param[in,out] data pointer to input * @param[in] size number of elements * @return none. */ void arm_relu_q7(q7_t *data, uint16_t size); /** * @brief s8 ReLU6 function * @param[in,out] data pointer to input * @param[in] size number of elements */ void arm_relu6_s8(q7_t *data, uint16_t size); /** * @brief Q15 RELU function * @param[in,out] data pointer to input * @param[in] size number of elements * @return none. */ void arm_relu_q15(q15_t *data, uint16_t size); /** * @brief Q7 neural network activation function using direct table look-up * @param[in,out] data pointer to input * @param[in] size number of elements * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 * @param[in] type type of activation functions * @return none. */ void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type); /** * @brief Q15 neural network activation function using direct table look-up * @param[in,out] data pointer to input * @param[in] size number of elements * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 * @param[in] type type of activation functions * @return none. * * @details * * This is the direct table look-up approach. * * Assume here the integer part of the fixed-point is <= 3. * More than 3 just not making much sense, makes no difference with * saturation followed by any of these activation functions. */ void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type); /** * @defgroup Pooling Pooling Functions * * Perform pooling functions, including max pooling and average pooling * */ /** * @brief Q7 max pooling function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] Im_out pointer to output tensor * @return none. * */ void arm_maxpool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out); /** * @brief Q7 average pooling function * @param[in] Im_in pointer to input tensor * @param[in] dim_im_in input tensor dimension * @param[in] ch_im_in number of input tensor channels * @param[in] dim_kernel filter kernel size * @param[in] padding padding sizes * @param[in] stride convolution stride * @param[in] dim_im_out output tensor dimension * @param[in,out] bufferA pointer to buffer space for input * @param[in,out] Im_out pointer to output tensor * @return none. * */ void arm_avepool_q7_HWC(q7_t *Im_in, const uint16_t dim_im_in, const uint16_t ch_im_in, const uint16_t dim_kernel, const uint16_t padding, const uint16_t stride, const uint16_t dim_im_out, q7_t *bufferA, q7_t *Im_out); /** * @brief s8 average pooling function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] pool_params Pooling parameters * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Argument 'N' is not used. * @param[in] input_data Input (activation) data pointer. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] * Argument N and C are not used. * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] * Argument N is not used. * C_OUT equals C_IN. * @param[in, out] output_data Output data pointer. Data type: int8 * @return The function returns * ARM_MATH_SUCCESS - Successful operation * * @details * - Supported Framework: TensorFlow Lite * */ arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief Get the required buffer size for S8 average pooling function * @param[in] dim_dst_width output tensor dimension * @param[in] ch_src number of input tensor channels * @return The function returns required buffer size in bytes * */ int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src); /** * @brief s16 average pooling function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] pool_params Pooling parameters * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Argument 'N' is not used. * @param[in] input_data Input (activation) data pointer. Data type: int16 * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] * Argument N and C are not used. * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] * Argument N is not used. * C_OUT equals C_IN. * @param[in, out] output_data Output data pointer. Data type: int16 * @return The function returns * ARM_MATH_SUCCESS - Successful operation * * @details * - Supported Framework: TensorFlow Lite * */ arm_status arm_avgpool_s16(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const int16_t *input_data, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, int16_t *output_data); /** * @brief Get the required buffer size for S16 average pooling function * @param[in] dim_dst_width output tensor dimension * @param[in] ch_src number of input tensor channels * @return The function returns required buffer size in bytes * */ int32_t arm_avgpool_s16_get_buffer_size(const int dim_dst_width, const int ch_src); /** * @brief s8 max pooling function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] pool_params Pooling parameters * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Argument 'N' is not used. * @param[in] input_data Input (activation) data pointer. The input tensor must not * overlap with the output tensor. Data type: int8 * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] * Argument N and C are not used. * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] * Argument N is not used. * C_OUT equals C_IN. * @param[in, out] output_data Output data pointer. Data type: int8 * @return The function returns * ARM_MATH_SUCCESS - Successful operation * * @details * - Supported Framework: TensorFlow Lite * */ arm_status arm_max_pool_s8(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief s16 max pooling function. * * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function * definition file to see if an additional buffer is required. * Optional function {API}_get_buffer_size() provides the buffer * size if an additional buffer is required. * @param[in] pool_params Pooling parameters * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] * Argument 'N' is not used. * @param[in] src Input (activation) data pointer. The input tensor must not * overlap with the output tensor. Data type: int16 * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] * Argument N and C are not used. * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] * Argument N is not used. * C_OUT equals C_IN. * @param[in, out] dst Output data pointer. Data type: int16 * @return The function returns * ARM_MATH_SUCCESS - Successful operation * * @details * - Supported Framework: TensorFlow Lite * */ arm_status arm_max_pool_s16(const cmsis_nn_context *ctx, const cmsis_nn_pool_params *pool_params, const cmsis_nn_dims *input_dims, const int16_t *src, const cmsis_nn_dims *filter_dims, const cmsis_nn_dims *output_dims, int16_t *dst); /** * @defgroup Softmax Softmax Functions * * EXP(2) based softmax functions. * */ /** * @brief Q7 softmax function * @param[in] vec_in pointer to input vector * @param[in] dim_vec input vector dimension * @param[out] p_out pointer to output vector * * @note This function is an optimized version which is not bit-accurate with * TensorFlow Lite's kernel * */ void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out); /** * @brief Q7 softmax function with batch parameter * @param[in] vec_in pointer to input vector * @param[in] nb_batches number of batches * @param[in] dim_vec input vector dimension * @param[out] p_out pointer to output vector * @return none. * * @note This function is an optimized version which is not bit-accurate with * TensorFlow Lite's kernel * */ void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out); /** * @brief Q15 softmax function * @param[in] vec_in pointer to input vector * @param[in] dim_vec input vector dimension * @param[out] p_out pointer to output vector * @return none. * * @note This function is an optimized version which is not bit-accurate with * TensorFlow Lite's kernel * */ void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out); /** * @brief S8 softmax function * @param[in] input Pointer to the input tensor * @param[in] num_rows Number of rows in the input tensor * @param[in] row_size Number of elements in each input row * @param[in] mult Input quantization multiplier * @param[in] shift Input quantization shift within the range [0, 31] * @param[in] diff_min Minimum difference with max in row. Used to check if * the quantized exponential operation can be performed * @param[out] output Pointer to the output tensor * * @note Supported framework: TensorFlow Lite micro (bit-accurate) * */ void arm_softmax_s8(const int8_t *input, const int32_t num_rows, const int32_t row_size, const int32_t mult, const int32_t shift, const int32_t diff_min, int8_t *output); /** * @brief S8 to s16 softmax function * @param[in] input Pointer to the input tensor * @param[in] num_rows Number of rows in the input tensor * @param[in] row_size Number of elements in each input row * @param[in] mult Input quantization multiplier * @param[in] shift Input quantization shift within the range [0, 31] * @param[in] diff_min Minimum difference with max in row. Used to check if * the quantized exponential operation can be performed * @param[out] output Pointer to the output tensor * * @note Supported framework: TensorFlow Lite micro (bit-accurate) * */ void arm_softmax_s8_s16(const int8_t *input, const int32_t num_rows, const int32_t row_size, const int32_t mult, const int32_t shift, const int32_t diff_min, int16_t *output); /** * @brief S16 softmax function * @param[in] input Pointer to the input tensor * @param[in] num_rows Number of rows in the input tensor * @param[in] row_size Number of elements in each input row * @param[in] mult Input quantization multiplier * @param[in] shift Input quantization shift within the range [0, 31] * @param[in] softmax_params Softmax s16 layer parameters with two pointers to LUTs speficied below. * For indexing the high 9 bits are used and 7 remaining for interpolation. * That means 512 entries for the 9-bit indexing and 1 extra for interpolation, i.e. 513 * values for each LUT. * - Lookup table for exp(x), where x uniform distributed between [-10.0 , 0.0] * - Lookup table for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0] * @param[out] output Pointer to the output tensor * @return The function returns * ARM_MATH_ARGUMENT_ERROR if LUTs are NULL * ARM_MATH_SUCCESS - Successful operation * * @note Supported framework: TensorFlow Lite micro (bit-accurate) * */ arm_status arm_softmax_s16(const int16_t *input, const int32_t num_rows, const int32_t row_size, const int32_t mult, const int32_t shift, const cmsis_nn_softmax_lut_s16 *softmax_params, int16_t *output); /** * @brief U8 softmax function * @param[in] input Pointer to the input tensor * @param[in] num_rows Number of rows in the input tensor * @param[in] row_size Number of elements in each input row * @param[in] mult Input quantization multiplier * @param[in] shift Input quantization shift within the range [0, 31] * @param[in] diff_min Minimum difference with max in row. Used to check if * the quantized exponential operation can be performed * @param[out] output Pointer to the output tensor * * @note Supported framework: TensorFlow Lite micro (bit-accurate) * */ void arm_softmax_u8(const uint8_t *input, const int32_t num_rows, const int32_t row_size, const int32_t mult, const int32_t shift, const int32_t diff_min, uint8_t *output); /** * @brief uint8 depthwise convolution function with asymmetric quantization * Unless specified otherwise, arguments are mandatory. * * @param[in] input Pointer to input tensor * @param[in] input_x Width of input tensor * @param[in] input_y Height of input tensor * @param[in] input_ch Channels in input tensor * @param[in] kernel Pointer to kernel weights * @param[in] kernel_x Width of kernel * @param[in] kernel_y Height of kernel * @param[in] ch_mult Number of channel multiplier * @param[in] pad_x Padding sizes x * @param[in] pad_y Padding sizes y * @param[in] stride_x stride along the width * @param[in] stride_y stride along the height * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. * @param[in] bias Pointer to optional bias values. If no bias is * availble, NULL is expected * @param[in] input_offset Input tensor zero offset * @param[in] filter_offset Kernel tensor zero offset * @param[in] output_offset Output tensor zero offset * @param[in,out] output Pointer to output tensor * @param[in] output_x Width of output tensor * @param[in] output_y Height of output tensor * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} * @param[in] out_shift Amount of right-shift for output * @param[in] out_mult Output multiplier for requantization * @return The function returns the following * ARM_MATH_SUCCESS - Successful operation * */ arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input, const uint16_t input_x, const uint16_t input_y, const uint16_t input_ch, const uint8_t *kernel, const uint16_t kernel_x, const uint16_t kernel_y, const int16_t ch_mult, const int16_t pad_x, const int16_t pad_y, const int16_t stride_x, const int16_t stride_y, const int16_t dilation_x, const int16_t dilation_y, const int32_t *bias, const int32_t input_offset, const int32_t filter_offset, const int32_t output_offset, uint8_t *output, const uint16_t output_x, const uint16_t output_y, const int32_t output_activation_min, const int32_t output_activation_max, const int32_t out_shift, const int32_t out_mult); /** * @defgroup Reshape Reshape Functions * */ /** * @brief Reshape a s8 vector into another with different shape * @param[in] input points to the s8 input vector * @param[out] output points to the s8 output vector * @param[in] total_size total size of the input and output vectors in bytes * * @note The output is expected to be in a memory area that does not overlap with the input's * */ void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size); /** * @defgroup Concatenation Concatenation Functions * */ /** * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis * This function should be called for each input tensor to concatenate. The argument offset_x * will be used to store the input tensor in the correct position in the output tensor * * i.e. offset_x = 0 * for(i = 0 i < num_input_tensors; ++i) * { * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x) * offset_x += input_x[i] * } * * This function assumes that the output tensor has: * -# The same height of the input tensor * -# The same number of channels of the input tensor * -# The same batch size of the input tensor * * Unless specified otherwise, arguments are mandatory. * * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it * does not involve any arithmetic operation * * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor. * @param[in] input_x Width of input tensor * @param[in] input_y Height of input tensor * @param[in] input_z Channels in input tensor * @param[in] input_w Batch size in input tensor * @param[out] output Pointer to output tensor. Expected to be at least * (input_x * input_y * input_z * input_w) + offset_x * bytes. * @param[in] output_x Width of output tensor * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor * It is user responsibility to provide the correct value * * Input constraints * offset_x is less than output_x * */ void arm_concatenation_s8_x(const int8_t *input, const uint16_t input_x, const uint16_t input_y, const uint16_t input_z, const uint16_t input_w, int8_t *output, const uint16_t output_x, const uint32_t offset_x); /** * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis * This function should be called for each input tensor to concatenate. The argument offset_y * will be used to store the input tensor in the correct position in the output tensor * * i.e. offset_y = 0 * for(i = 0 i < num_input_tensors; ++i) * { * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y) * offset_y += input_y[i] * } * * This function assumes that the output tensor has: * -# The same width of the input tensor * -# The same number of channels of the input tensor * -# The same batch size of the input tensor * * Unless specified otherwise, arguments are mandatory. * * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it * does not involve any arithmetic operation * * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor. * @param[in] input_x Width of input tensor * @param[in] input_y Height of input tensor * @param[in] input_z Channels in input tensor * @param[in] input_w Batch size in input tensor * @param[out] output Pointer to output tensor. Expected to be at least * (input_z * input_w * input_x * input_y) + offset_y * bytes. * @param[in] output_y Height of output tensor * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor * It is user responsibility to provide the correct value * * Input constraints * offset_y is less than output_y * */ void arm_concatenation_s8_y(const int8_t *input, const uint16_t input_x, const uint16_t input_y, const uint16_t input_z, const uint16_t input_w, int8_t *output, const uint16_t output_y, const uint32_t offset_y); /** * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis * This function should be called for each input tensor to concatenate. The argument offset_z * will be used to store the input tensor in the correct position in the output tensor * * i.e. offset_z = 0 * for(i = 0 i < num_input_tensors; ++i) * { * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z) * offset_z += input_z[i] * } * * This function assumes that the output tensor has: * -# The same width of the input tensor * -# The same height of the input tensor * -# The same batch size of the input tensor * * Unless specified otherwise, arguments are mandatory. * * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it * does not involve any arithmetic operation * * @param[in] input Pointer to input tensor. Input tensor must not overlap with output tensor. * @param[in] input_x Width of input tensor * @param[in] input_y Height of input tensor * @param[in] input_z Channels in input tensor * @param[in] input_w Batch size in input tensor * @param[out] output Pointer to output tensor. Expected to be at least * (input_x * input_y * input_z * input_w) + offset_z * bytes. * @param[in] output_z Channels in output tensor * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor * It is user responsibility to provide the correct value * * Input constraints * offset_z is less than output_z * */ void arm_concatenation_s8_z(const int8_t *input, const uint16_t input_x, const uint16_t input_y, const uint16_t input_z, const uint16_t input_w, int8_t *output, const uint16_t output_z, const uint32_t offset_z); /** * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size) * This function should be called for each input tensor to concatenate. The argument offset_w * will be used to store the input tensor in the correct position in the output tensor * * i.e. offset_w = 0 * for(i = 0 i < num_input_tensors; ++i) * { * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w) * offset_w += input_w[i] * } * * This function assumes that the output tensor has: * -# The same width of the input tensor * -# The same height of the input tensor * -# The same number o channels of the input tensor * * Unless specified otherwise, arguments are mandatory. * * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it * does not involve any arithmetic operation * * @param[in] input Pointer to input tensor * @param[in] input_x Width of input tensor * @param[in] input_y Height of input tensor * @param[in] input_z Channels in input tensor * @param[in] input_w Batch size in input tensor * @param[out] output Pointer to output tensor. Expected to be at least * input_x * input_y * input_z * input_w * bytes. * @param[in] offset_w The offset on the W axis to start concatenating the input tensor * It is user responsibility to provide the correct value * */ void arm_concatenation_s8_w(const int8_t *input, const uint16_t input_x, const uint16_t input_y, const uint16_t input_z, const uint16_t input_w, int8_t *output, const uint32_t offset_w); /** * @defgroup SVDF SVDF Layer Functions * */ /** * @brief s8 SVDF function with 8 bit state tensor and 8 bit time weights * * @param[in] input_ctx Temporary scratch buffer * @param[in] output_ctx Temporary output scratch buffer * @param[in] svdf_params SVDF Parameters * Range of svdf_params->input_offset : [-128, 127] * Range of svdf_params->output_offset : [-128, 127] * @param[in] input_quant_params Input quantization parameters * @param[in] output_quant_params Output quantization parameters * @param[in] input_dims Input tensor dimensions * @param[in] input_data Pointer to input tensor * @param[in] state_dims State tensor dimensions * @param[in] state_data Pointer to state tensor * @param[in] weights_feature_dims Weights (feature) tensor dimensions * @param[in] weights_feature_data Pointer to the weights (feature) tensor * @param[in] weights_time_dims Weights (time) tensor dimensions * @param[in] weights_time_data Pointer to the weights (time) tensor * @param[in] bias_dims Bias tensor dimensions * @param[in] bias_data Pointer to bias tensor * @param[in] output_dims Output tensor dimensions * @param[out] output_data Pointer to the output tensor * * @return The function returns ARM_MATH_SUCCESS * * @details * 1. Supported framework: TensorFlow Lite micro * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. * */ arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx, const cmsis_nn_context *output_ctx, const cmsis_nn_svdf_params *svdf_params, const cmsis_nn_per_tensor_quant_params *input_quant_params, const cmsis_nn_per_tensor_quant_params *output_quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *state_dims, q7_t *state_data, const cmsis_nn_dims *weights_feature_dims, const q7_t *weights_feature_data, const cmsis_nn_dims *weights_time_dims, const q7_t *weights_time_data, const cmsis_nn_dims *bias_dims, const q31_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); /** * @brief s8 SVDF function with 16 bit state tensor and 16 bit time weights * * @param[in] input_ctx Temporary scratch buffer * @param[in] output_ctx Temporary output scratch buffer * @param[in] svdf_params SVDF Parameters * Range of svdf_params->input_offset : [-128, 127] * Range of svdf_params->output_offset : [-128, 127] * @param[in] input_quant_params Input quantization parameters * @param[in] output_quant_params Output quantization parameters * @param[in] input_dims Input tensor dimensions * @param[in] input_data Pointer to input tensor * @param[in] state_dims State tensor dimensions * @param[in] state_data Pointer to state tensor * @param[in] weights_feature_dims Weights (feature) tensor dimensions * @param[in] weights_feature_data Pointer to the weights (feature) tensor * @param[in] weights_time_dims Weights (time) tensor dimensions * @param[in] weights_time_data Pointer to the weights (time) tensor * @param[in] bias_dims Bias tensor dimensions * @param[in] bias_data Pointer to bias tensor * @param[in] output_dims Output tensor dimensions * @param[out] output_data Pointer to the output tensor * * @return The function returns ARM_MATH_SUCCESS * * @details * 1. Supported framework: TensorFlow Lite micro * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. * */ arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx, const cmsis_nn_context *output_ctx, const cmsis_nn_svdf_params *svdf_params, const cmsis_nn_per_tensor_quant_params *input_quant_params, const cmsis_nn_per_tensor_quant_params *output_quant_params, const cmsis_nn_dims *input_dims, const q7_t *input_data, const cmsis_nn_dims *state_dims, q15_t *state_data, const cmsis_nn_dims *weights_feature_dims, const q7_t *weights_feature_data, const cmsis_nn_dims *weights_time_dims, const q15_t *weights_time_data, const cmsis_nn_dims *bias_dims, const q31_t *bias_data, const cmsis_nn_dims *output_dims, q7_t *output_data); #ifdef __cplusplus } #endif #endif