/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_bilinear_interp_f16.c * Description: Floating-point bilinear interpolation * * $Date: 23 April 2021 * $Revision: V1.9.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/interpolation_functions_f16.h" #if defined(ARM_FLOAT16_SUPPORTED) /** @ingroup groupInterpolation */ /** * @defgroup BilinearInterpolate Bilinear Interpolation * * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid. * The underlying function f(x, y) is sampled on a regular grid and the interpolation process * determines values between the grid points. * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension. * Bilinear interpolation is often used in image processing to rescale images. * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types. * * Algorithm * \par * The instance structure used by the bilinear interpolation functions describes a two dimensional data table. * For floating-point, the instance structure is defined as: *
   *   typedef struct
   *   {
   *     uint16_t numRows;
   *     uint16_t numCols;
   *     float16_t *pData;
   * } arm_bilinear_interp_instance_f16;
   * 
* * \par * where numRows specifies the number of rows in the table; * numCols specifies the number of columns in the table; * and pData points to an array of size numRows*numCols values. * The data table pTable is organized in row order and the supplied data values fall on integer indexes. * That is, table element (x,y) is located at pTable[x + y*numCols] where x and y are integers. * * \par * Let (x, y) specify the desired interpolation point. Then define: *
   *     XF = floor(x)
   *     YF = floor(y)
   * 
* \par * The interpolated output point is computed as: *
   *  f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
   *           + f(XF+1, YF) * (x-XF)*(1-(y-YF))
   *           + f(XF, YF+1) * (1-(x-XF))*(y-YF)
   *           + f(XF+1, YF+1) * (x-XF)*(y-YF)
   * 
* Note that the coordinates (x, y) contain integer and fractional components. * The integer components specify which portion of the table to use while the * fractional components control the interpolation processor. * * \par * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output. */ /** * @addtogroup BilinearInterpolate * @{ */ /** * @brief Floating-point bilinear interpolation. * @param[in,out] S points to an instance of the interpolation structure. * @param[in] X interpolation coordinate. * @param[in] Y interpolation coordinate. * @return out interpolated value. */ float16_t arm_bilinear_interp_f16( const arm_bilinear_interp_instance_f16 * S, float16_t X, float16_t Y) { float16_t out; float16_t f00, f01, f10, f11; float16_t *pData = S->pData; int32_t xIndex, yIndex, index; float16_t xdiff, ydiff; float16_t b1, b2, b3, b4; xIndex = (int32_t) X; yIndex = (int32_t) Y; /* Care taken for table outside boundary */ /* Returns zero output when values are outside table boundary */ if (xIndex < 0 || xIndex > (S->numCols - 2) || yIndex < 0 || yIndex > (S->numRows - 2)) { return (0); } /* Calculation of index for two nearest points in X-direction */ index = (xIndex ) + (yIndex ) * S->numCols; /* Read two nearest points in X-direction */ f00 = pData[index]; f01 = pData[index + 1]; /* Calculation of index for two nearest points in Y-direction */ index = (xIndex ) + (yIndex+1) * S->numCols; /* Read two nearest points in Y-direction */ f10 = pData[index]; f11 = pData[index + 1]; /* Calculation of intermediate values */ b1 = f00; b2 = (_Float16)f01 - (_Float16)f00; b3 = (_Float16)f10 - (_Float16)f00; b4 = (_Float16)f00 - (_Float16)f01 - (_Float16)f10 + (_Float16)f11; /* Calculation of fractional part in X */ xdiff = (_Float16)X - (_Float16)xIndex; /* Calculation of fractional part in Y */ ydiff = (_Float16)Y - (_Float16)yIndex; /* Calculation of bi-linear interpolated output */ out = (_Float16)b1 + (_Float16)b2 * (_Float16)xdiff + (_Float16)b3 * (_Float16)ydiff + (_Float16)b4 * (_Float16)xdiff * (_Float16)ydiff; /* return to application */ return (out); } /** * @} end of BilinearInterpolate group */ #endif /* #if defined(ARM_FLOAT16_SUPPORTED) */