/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_vlog_q15 * Description: Q15 vector log * * $Date: 19 July 2021 * $Revision: V1.10.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dsp/fast_math_functions.h" #define LOG_Q15_ACCURACY 15 /* Bit to represent the normalization factor It is Ceiling[Log2[LOG_Q15_ACCURACY]] of the previous value. The Log2 algorithm is assuming that the value x is 1 <= x < 2. But input value could be as small a 2^-LOG_Q15_ACCURACY which would give an integer part of -15. */ #define LOG_Q15_INTEGER_PART 4 /* 2.0 in q14 */ #define LOQ_Q15_THRESHOLD (1u << LOG_Q15_ACCURACY) /* HALF */ #define LOQ_Q15_Q16_HALF LOQ_Q15_THRESHOLD #define LOQ_Q15_Q14_HALF (LOQ_Q15_Q16_HALF >> 2) /* 1.0 / Log2[Exp[1]] in q15 */ #define LOG_Q15_INVLOG2EXP 0x58b9u /* Clay Turner algorithm */ static uint16_t arm_scalar_log_q15(uint16_t src) { int i; int16_t c = __CLZ(src)-16; int16_t normalization=0; /* 0.5 in q11 */ uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1); /* Will compute y = log2(x) for 1 <= x < 2.0 */ uint16_t x; /* q11 */ uint16_t y=0; /* q11 */ int16_t tmp; /* Normalize and convert to q14 format */ x = src; if ((c-1) < 0) { x = x >> (1-c); } else { x = x << (c-1); } normalization = c; /* Compute the Log2. Result is in q11 instead of q16 because we know 0 <= y < 1.0 but we want a result allowing to do a product on int16 rather than having to go through int32 */ for(i = 0; i < LOG_Q15_ACCURACY ; i++) { x = (((int32_t)x*x)) >> (LOG_Q15_ACCURACY - 1); if (x >= LOQ_Q15_THRESHOLD) { y += inc ; x = x >> 1; } inc = inc >> 1; } /* Convert the Log2 to Log and apply normalization. We compute (y - normalisation) * (1 / Log2[e]). */ /* q11 */ //tmp = y - ((int32_t)normalization << (LOG_Q15_ACCURACY + 1)); tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART)); /* q4.11 */ y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15; return(y); } #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) q15x8_t vlogq_q15(q15x8_t src) { int i; int16x8_t c = vclzq_s16(src); int16x8_t normalization = c; /* 0.5 in q11 */ uint16_t inc = LOQ_Q15_Q16_HALF >> (LOG_Q15_INTEGER_PART + 1); /* Will compute y = log2(x) for 1 <= x < 2.0 */ uint16x8_t x; /* q11 */ uint16x8_t y = vdupq_n_u16(0); /* q11 */ int16x8_t vtmp; mve_pred16_t p; /* Normalize and convert to q14 format */ vtmp = vsubq_n_s16(c,1); x = vshlq_u16((uint16x8_t)src,vtmp); /* Compute the Log2. Result is in q11 instead of q16 because we know 0 <= y < 1.0 but we want a result allowing to do a product on int16 rather than having to go through int32 */ for(i = 0; i < LOG_Q15_ACCURACY ; i++) { x = vmulhq_u16(x,x); x = vshlq_n_u16(x,2); p = vcmphiq_u16(x,vdupq_n_u16(LOQ_Q15_THRESHOLD)); y = vaddq_m_n_u16(y, y,inc,p); x = vshrq_m_n_u16(x,x,1,p); inc = inc >> 1; } /* Convert the Log2 to Log and apply normalization. We compute (y - normalisation) * (1 / Log2[e]). */ /* q11 */ // tmp = (int16_t)y - (normalization << (LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART)); vtmp = vshlq_n_s16(normalization,LOG_Q15_ACCURACY - LOG_Q15_INTEGER_PART); vtmp = vsubq_s16((int16x8_t)y,vtmp); /* q4.11 */ // y = ((int32_t)tmp * LOG_Q15_INVLOG2EXP) >> 15; vtmp = vqdmulhq_n_s16(vtmp,LOG_Q15_INVLOG2EXP); return(vtmp); } #endif /** @ingroup groupFastMath */ /** @addtogroup vlog @{ */ /** @brief q15 vector of log values. @param[in] pSrc points to the input vector in q15 @param[out] pDst points to the output vector in q4.11 @param[in] blockSize number of samples in each vector @return none */ void arm_vlog_q15( const q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counters */ #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) q15x8_t src; q15x8_t dst; blkCnt = blockSize >> 3; while (blkCnt > 0U) { src = vld1q(pSrc); dst = vlogq_q15(src); vst1q(pDst, dst); pSrc += 8; pDst += 8; /* Decrement loop counter */ blkCnt--; } blkCnt = blockSize & 7; #else blkCnt = blockSize; #endif while (blkCnt > 0U) { *pDst++ = arm_scalar_log_q15(*pSrc++); /* Decrement loop counter */ blkCnt--; } } /** @} end of vlog group */