/****************************************************************************** * @file matrix_functions_f16.h * @brief Public header file for CMSIS DSP Library * @version V1.9.0 * @date 23 April 2021 * Target Processor: Cortex-M and Cortex-A cores ******************************************************************************/ /* * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _MATRIX_FUNCTIONS_F16_H_ #define _MATRIX_FUNCTIONS_F16_H_ #ifdef __cplusplus extern "C" { #endif #include "arm_math_types_f16.h" #include "arm_math_memory.h" #include "dsp/none.h" #include "dsp/utils.h" #if defined(ARM_FLOAT16_SUPPORTED) /** * @brief Instance structure for the floating-point matrix structure. */ typedef struct { uint16_t numRows; /**< number of rows of the matrix. */ uint16_t numCols; /**< number of columns of the matrix. */ float16_t *pData; /**< points to the data of the matrix. */ } arm_matrix_instance_f16; /** * @brief Floating-point matrix addition. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_add_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point, complex, matrix multiplication. * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_cmplx_mult_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either ARM_MATH_SIZE_MISMATCH * or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_trans_f16( const arm_matrix_instance_f16 * pSrc, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point complex matrix transpose. * @param[in] pSrc points to the input matrix * @param[out] pDst points to the output matrix * @return The function returns either ARM_MATH_SIZE_MISMATCH * or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_cmplx_trans_f16( const arm_matrix_instance_f16 * pSrc, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix multiplication * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_mult_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix and vector multiplication * @param[in] pSrcMat points to the input matrix structure * @param[in] pVec points to vector * @param[out] pDst points to output vector */ void arm_mat_vec_mult_f16( const arm_matrix_instance_f16 *pSrcMat, const float16_t *pVec, float16_t *pDst); /** * @brief Floating-point matrix subtraction * @param[in] pSrcA points to the first input matrix structure * @param[in] pSrcB points to the second input matrix structure * @param[out] pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_sub_f16( const arm_matrix_instance_f16 * pSrcA, const arm_matrix_instance_f16 * pSrcB, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix scaling. * @param[in] pSrc points to the input matrix * @param[in] scale scale factor * @param[out] pDst points to the output matrix * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_scale_f16( const arm_matrix_instance_f16 * pSrc, float16_t scale, arm_matrix_instance_f16 * pDst); /** * @brief Floating-point matrix initialization. * @param[in,out] S points to an instance of the floating-point matrix structure. * @param[in] nRows number of rows in the matrix. * @param[in] nColumns number of columns in the matrix. * @param[in] pData points to the matrix data array. */ void arm_mat_init_f16( arm_matrix_instance_f16 * S, uint16_t nRows, uint16_t nColumns, float16_t * pData); /** * @brief Floating-point matrix inverse. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR. */ arm_status arm_mat_inverse_f16( const arm_matrix_instance_f16 * src, arm_matrix_instance_f16 * dst); /** * @brief Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix. * @param[in] src points to the instance of the input floating-point matrix structure. * @param[out] dst points to the instance of the output floating-point matrix structure. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. * If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. * If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. * The decomposition is returning a lower triangular matrix. */ arm_status arm_mat_cholesky_f16( const arm_matrix_instance_f16 * src, arm_matrix_instance_f16 * dst); /** * @brief Solve UT . X = A where UT is an upper triangular matrix * @param[in] ut The upper triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of UT . X = A * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. */ arm_status arm_mat_solve_upper_triangular_f16( const arm_matrix_instance_f16 * ut, const arm_matrix_instance_f16 * a, arm_matrix_instance_f16 * dst); /** * @brief Solve LT . X = A where LT is a lower triangular matrix * @param[in] lt The lower triangular matrix * @param[in] a The matrix a * @param[out] dst The solution X of LT . X = A * @return The function returns ARM_MATH_SINGULAR, if the system can't be solved. */ arm_status arm_mat_solve_lower_triangular_f16( const arm_matrix_instance_f16 * lt, const arm_matrix_instance_f16 * a, arm_matrix_instance_f16 * dst); #endif /*defined(ARM_FLOAT16_SUPPORTED)*/ #ifdef __cplusplus } #endif #endif /* ifndef _MATRIX_FUNCTIONS_F16_H_ */