/* * Copyright (c) 2016, 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __ARM_COMPUTE_NEMATH_H__ #define __ARM_COMPUTE_NEMATH_H__ #if defined(ARM_MATH_NEON) /** Calculate floor of a vector. * * @param[in] val Input vector value in F32 format. * * @return The calculated floor vector. */ static inline float32x4_t vfloorq_f32(float32x4_t val); /** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */ static inline float32x2_t vinvsqrt_f32(float32x2_t x); /** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */ static inline float32x4_t vinvsqrtq_f32(float32x4_t x); /** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */ static inline float32x2_t vinv_f32(float32x2_t x); /** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */ static inline float32x4_t vinvq_f32(float32x4_t x); /** Perform a 7th degree polynomial approximation using Estrin's method. * * @param[in] x Input vector value in F32 format. * @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors) * * @return The calculated approximation. */ static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs); /** Calculate exponential * * @param[in] x Input vector value in F32 format. * * @return The calculated exponent. */ static inline float32x4_t vexpq_f32(float32x4_t x); /** Calculate logarithm * * @param[in] x Input vector value in F32 format. * * @return The calculated logarithm. */ static inline float32x4_t vlogq_f32(float32x4_t x); /** Calculate hyperbolic tangent. * * tanh(x) = (e^2x - 1)/(e^2x + 1) * * @note We clamp x to [-5,5] to avoid overflowing issues. * * @param[in] val Input vector value in F32 format. * * @return The calculated Hyperbolic Tangent. */ static inline float32x4_t vtanhq_f32(float32x4_t val); /** Calculate n power of a number. * * pow(x,n) = e^(n*log(x)) * * @param[in] val Input vector value in F32 format. * @param[in] n Powers to raise the input to. * * @return The calculated power. */ static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n); #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC /** Calculate hyperbolic tangent. * * tanh(x) = (e^2x - 1)/(e^2x + 1) * * @note We clamp x to [-5,5] to avoid overflowing issues. * * @param[in] val Input vector value in F32 format. * * @return The calculated Hyperbolic Tangent. */ static inline float16x8_t vtanhq_f16(float16x8_t val); /** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */ static inline float16x4_t vinv_f16(float16x4_t x); /** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */ static inline float16x8_t vinvq_f16(float16x8_t x); /** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */ static inline float16x4_t vinvsqrt_f16(float16x4_t x); /** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */ static inline float16x8_t vinvsqrtq_f16(float16x8_t x); /** Calculate exponential * * @param[in] x Input vector value in F16 format. * * @return The calculated exponent. */ static inline float16x8_t vexpq_f16(float16x8_t x); /** Calculate n power of a number. * * pow(x,n) = e^(n*log(x)) * * @param[in] val Input vector value in F16 format. * @param[in] n Powers to raise the input to. * * @return The calculated power. */ static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n); #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ /** Exponent polynomial coefficients */ extern const float32_t exp_tab[4*8]; /** Logarithm polynomial coefficients */ extern const float32_t log_tab[4*8]; #ifndef DOXYGEN_SKIP_THIS inline float32x4_t vfloorq_f32(float32x4_t val) { static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f}; const int32x4_t z = vcvtq_s32_f32(val); const float32x4_t r = vcvtq_f32_s32(z); return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, vld1q_f32(CONST_1)), r); } inline float32x2_t vinvsqrt_f32(float32x2_t x) { float32x2_t sqrt_reciprocal = vrsqrte_f32(x); sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); return sqrt_reciprocal; } inline float32x4_t vinvsqrtq_f32(float32x4_t x) { float32x4_t sqrt_reciprocal = vrsqrteq_f32(x); sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); return sqrt_reciprocal; } inline float32x2_t vinv_f32(float32x2_t x) { float32x2_t recip = vrecpe_f32(x); recip = vmul_f32(vrecps_f32(x, recip), recip); recip = vmul_f32(vrecps_f32(x, recip), recip); return recip; } inline float32x4_t vinvq_f32(float32x4_t x) { float32x4_t recip = vrecpeq_f32(x); recip = vmulq_f32(vrecpsq_f32(x, recip), recip); recip = vmulq_f32(vrecpsq_f32(x, recip), recip); return recip; } inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs) { float32x4_t A = vmlaq_f32(vld1q_f32(&coeffs[4*0]), vld1q_f32(&coeffs[4*4]), x); float32x4_t B = vmlaq_f32(vld1q_f32(&coeffs[4*2]), vld1q_f32(&coeffs[4*6]), x); float32x4_t C = vmlaq_f32(vld1q_f32(&coeffs[4*1]), vld1q_f32(&coeffs[4*5]), x); float32x4_t D = vmlaq_f32(vld1q_f32(&coeffs[4*3]), vld1q_f32(&coeffs[4*7]), x); float32x4_t x2 = vmulq_f32(x, x); float32x4_t x4 = vmulq_f32(x2, x2); float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4); return res; } inline float32x4_t vexpq_f32(float32x4_t x) { static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2) static const float32_t CONST_INV_LN2[4] = {1.4426950408f,1.4426950408f,1.4426950408f,1.4426950408f}; // 1/ln(2) static const float32_t CONST_0[4] = {0.f,0.f,0.f,0.f}; static const int32_t CONST_NEGATIVE_126[4] = {-126,-126,-126,-126}; // Perform range reduction [-log(2),log(2)] int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, vld1q_f32(CONST_INV_LN2))); float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2)); // Polynomial Approximation float32x4_t poly = vtaylor_polyq_f32(val, exp_tab); // Reconstruct poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23))); poly = vbslq_f32(vcltq_s32(m, vld1q_s32(CONST_NEGATIVE_126)), vld1q_f32(CONST_0), poly); return poly; } inline float32x4_t vlogq_f32(float32x4_t x) { static const int32_t CONST_127[4] = {127,127,127,127}; // 127 static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2) // Extract exponent int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), vld1q_s32(CONST_127)); float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23))); // Polynomial Approximation float32x4_t poly = vtaylor_polyq_f32(val, log_tab); // Reconstruct poly = vmlaq_f32(poly, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2)); return poly; } inline float32x4_t vtanhq_f32(float32x4_t val) { static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f}; static const float32_t CONST_2[4] = {2.f,2.f,2.f,2.f}; static const float32_t CONST_MIN_TANH[4] = {-10.f,-10.f,-10.f,-10.f}; static const float32_t CONST_MAX_TANH[4] = {10.f,10.f,10.f,10.f}; float32x4_t x = vminq_f32(vmaxq_f32(val, vld1q_f32(CONST_MIN_TANH)), vld1q_f32(CONST_MAX_TANH)); float32x4_t exp2x = vexpq_f32(vmulq_f32(vld1q_f32(CONST_2), x)); float32x4_t num = vsubq_f32(exp2x, vld1q_f32(CONST_1)); float32x4_t den = vaddq_f32(exp2x, vld1q_f32(CONST_1)); float32x4_t tanh = vmulq_f32(num, vinvq_f32(den)); return tanh; } inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n) { return vexpq_f32(vmulq_f32(n, vlogq_f32(val))); } #endif /* DOXYGEN_SKIP_THIS */ #ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC /** Exponent polynomial coefficients */ /** Logarithm polynomial coefficients */ #ifndef DOXYGEN_SKIP_THIS inline float16x8_t vfloorq_f16(float16x8_t val) { static const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f}; const int16x8_t z = vcvtq_s16_f16(val); const float16x8_t r = vcvtq_f16_s16(z); return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, vld1q_f16(CONST_1)), r); } inline float16x4_t vinvsqrt_f16(float16x4_t x) { float16x4_t sqrt_reciprocal = vrsqrte_f16(x); sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); return sqrt_reciprocal; } inline float16x8_t vinvsqrtq_f16(float16x8_t x) { float16x8_t sqrt_reciprocal = vrsqrteq_f16(x); sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); return sqrt_reciprocal; } inline float16x4_t vinv_f16(float16x4_t x) { float16x4_t recip = vrecpe_f16(x); recip = vmul_f16(vrecps_f16(x, recip), recip); recip = vmul_f16(vrecps_f16(x, recip), recip); return recip; } inline float16x8_t vinvq_f16(float16x8_t x) { float16x8_t recip = vrecpeq_f16(x); recip = vmulq_f16(vrecpsq_f16(x, recip), recip); recip = vmulq_f16(vrecpsq_f16(x, recip), recip); return recip; } inline float16x8_t vtanhq_f16(float16x8_t val) { const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f}; const float16_t CONST_2[8] = {2.f,2.f,2.f,2.f,2.f,2.f,2.f,2.f}; const float16_t CONST_MIN_TANH[8] = {-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f}; const float16_t CONST_MAX_TANH[8] = {10.f,10.f,10.f,10.f,10.f,10.f,10.f,10.f}; const float16x8_t x = vminq_f16(vmaxq_f16(val, vld1q_f16(CONST_MIN_TANH)), vld1q_f16(CONST_MAX_TANH)); const float16x8_t exp2x = vexpq_f16(vmulq_f16(vld1q_f16(CONST_2), x)); const float16x8_t num = vsubq_f16(exp2x, vld1q_f16(CONST_1)); const float16x8_t den = vaddq_f16(exp2x, vld1q_f16(CONST_1)); const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den)); return tanh; } inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const float16_t *coeffs) { const float16x8_t A = vaddq_f16(vld1q_f16(&coeffs[8*0]), vmulq_f16(vld1q_f16(&coeffs[8*4]), x)); const float16x8_t B = vaddq_f16(vld1q_f16(&coeffs[8*2]), vmulq_f16(vld1q_f16(&coeffs[8*6]), x)); const float16x8_t C = vaddq_f16(vld1q_f16(&coeffs[8*1]), vmulq_f16(vld1q_f16(&coeffs[8*5]), x)); const float16x8_t D = vaddq_f16(vld1q_f16(&coeffs[8*3]), vmulq_f16(vld1q_f16(&coeffs[8*7]), x)); const float16x8_t x2 = vmulq_f16(x, x); const float16x8_t x4 = vmulq_f16(x2, x2); const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4)); return res; } inline float16x8_t vexpq_f16(float16x8_t x) { // TODO (COMPMID-1535) : Revisit FP16 approximations const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high)); return res; } inline float16x8_t vlogq_f16(float16x8_t x) { // TODO (COMPMID-1535) : Revisit FP16 approximations const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high)); return res; } inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n) { // TODO (giaiod01) - COMPMID-1535 float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n)); float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n)); float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val)); float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val)); float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32))); float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32))); return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32)); } #endif /* DOXYGEN_SKIP_THIS */ #endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ #endif #endif /* __ARM_COMPUTE_NEMATH_H__ */