2533 lines
127 KiB
C
2533 lines
127 KiB
C
|
/*
|
||
|
* Copyright (C) 2010-2022 Arm Limited or its affiliates.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS NN Library
|
||
|
* Title: arm_nnfunctions.h
|
||
|
* Description: Public header file for CMSIS NN Library
|
||
|
*
|
||
|
* $Date: 19 April 2022
|
||
|
* $Revision: V.9.0.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M CPUs
|
||
|
* -------------------------------------------------------------------- */
|
||
|
|
||
|
/**
|
||
|
\mainpage CMSIS NN Software Library
|
||
|
*
|
||
|
* Introduction
|
||
|
* ------------
|
||
|
*
|
||
|
* This user manual describes the CMSIS NN software library,
|
||
|
* a collection of efficient neural network kernels developed to maximize the
|
||
|
* performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
|
||
|
*
|
||
|
* The library is divided into a number of functions each covering a specific category:
|
||
|
* - Convolution Functions
|
||
|
* - Activation Functions
|
||
|
* - Fully-connected Layer Functions
|
||
|
* - SVDF Layer Functions
|
||
|
* - Pooling Functions
|
||
|
* - Softmax Functions
|
||
|
* - Basic math Functions
|
||
|
*
|
||
|
* The library has separate functions for operating on different weight and activation data
|
||
|
* types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
|
||
|
* kernels are included in the function description. The implementation details are also
|
||
|
* described in this paper [1].
|
||
|
*
|
||
|
* Supported Processors
|
||
|
* -------
|
||
|
* CMSIS-NN targets Cortex-M processors with typically three different implementations for each function. Each
|
||
|
* targets a different group of processors.
|
||
|
* - Processors without SIMD capability (e.g, Cortex-M0)
|
||
|
* - Processors with DSP extention (e.g Cortex-M4)
|
||
|
* - Processors with MVE extension (e.g Cortex-M55)
|
||
|
* The right implementation is picked through feature flags and the user usually does not have to explicit set it.
|
||
|
*
|
||
|
* Function Classification
|
||
|
* --------
|
||
|
* The functions can be classified into two segments
|
||
|
* - Legacy functions supporting ARM's internal symmetric quantization(8 bits).
|
||
|
* - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits).
|
||
|
*
|
||
|
* The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there.
|
||
|
* The article in [2] describes in detail how to run a network using the legacy functions.
|
||
|
*
|
||
|
* The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL
|
||
|
* micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run
|
||
|
* a TensorFlow Lite model using optimized CMSIS-NN kernels.
|
||
|
*
|
||
|
* Block Diagram
|
||
|
* --------
|
||
|
* \image html CMSIS-NN-OVERVIEW.PNG
|
||
|
*
|
||
|
* Examples
|
||
|
* --------
|
||
|
*
|
||
|
* The library ships with a number of examples which demonstrate how to use the library functions.
|
||
|
*
|
||
|
* Pre-processor Macros
|
||
|
* ------------
|
||
|
*
|
||
|
* Each library project have different pre-processor macros.
|
||
|
*
|
||
|
* - ARM_MATH_DSP:
|
||
|
*
|
||
|
* Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension).
|
||
|
*
|
||
|
* - ARM_MATH_MVEI:
|
||
|
*
|
||
|
* Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension.
|
||
|
|
||
|
* - ARM_MATH_AUTOVECTORIZE
|
||
|
* Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline
|
||
|
* assembly. It does not affect functions that use C or intrinsics.
|
||
|
* - ARM_MATH_BIG_ENDIAN:
|
||
|
*
|
||
|
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy
|
||
|
* functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for
|
||
|
* little endian targets.
|
||
|
*
|
||
|
* - ARM_NN_TRUNCATE:
|
||
|
*
|
||
|
* Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
|
||
|
*
|
||
|
*
|
||
|
* Copyright Notice
|
||
|
* ------------
|
||
|
*
|
||
|
* Copyright (C) 2010-2019 Arm Limited. All rights reserved.
|
||
|
*
|
||
|
* [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
|
||
|
*
|
||
|
* [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN
|
||
|
*
|
||
|
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
|
||
|
* [3] https://www.tensorflow.org/lite/microcontrollers/library
|
||
|
*
|
||
|
* [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @defgroup groupNN Neural Network Functions
|
||
|
* A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support
|
||
|
* TensorFlow Lite framework.
|
||
|
*/
|
||
|
|
||
|
#ifndef _ARM_NNFUNCTIONS_H
|
||
|
#define _ARM_NNFUNCTIONS_H
|
||
|
|
||
|
#include "arm_nn_math_types.h"
|
||
|
#include "arm_nn_types.h"
|
||
|
|
||
|
#define USE_INTRINSIC
|
||
|
|
||
|
//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @brief Struct for specifying activation function types
|
||
|
*
|
||
|
*/
|
||
|
typedef enum
|
||
|
{
|
||
|
ARM_SIGMOID = 0,
|
||
|
/**< Sigmoid activation function */
|
||
|
ARM_TANH = 1,
|
||
|
/**< Tanh activation function */
|
||
|
} arm_nn_activation_type;
|
||
|
|
||
|
/**
|
||
|
* @defgroup NNConv Convolution Functions
|
||
|
*
|
||
|
* Collection of convolution, depthwise convolution functions and their variants.
|
||
|
*
|
||
|
* The convolution is implemented in 2 steps: im2col and GEMM
|
||
|
*
|
||
|
* im2col is a process of converting each patch of image data into
|
||
|
* a column. After im2col, the convolution is computed as matrix-matrix
|
||
|
* multiplication.
|
||
|
*
|
||
|
* To reduce the memory footprint, the im2col is performed partially.
|
||
|
* Each iteration, only a few column (i.e., patches) are generated and
|
||
|
* computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
|
||
|
cmsis-nn
|
||
|
* to perform the convolution.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* Range of conv_params->input_offset : [-127, 128]
|
||
|
* Range of conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
|
||
|
* spatial filter dimensions
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int8
|
||
|
*
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
|
||
|
* <code>ARM_MATH_SUCCESS</code> on successful completion.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for arm_convolve_wrapper_s8
|
||
|
*
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* Range of conv_params->input_offset : [-127, 128]
|
||
|
* Range of conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
|
||
|
* filter dimensions
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
*
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in
|
||
|
cmsis-nn
|
||
|
* to perform the convolution.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* conv_params->input_offset : Not used
|
||
|
* conv_params->output_offset : Not used
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int16
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
|
||
|
* spatial filter dimensions
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int64
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int16
|
||
|
*
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
|
||
|
* <code>ARM_MATH_SUCCESS</code> on successful completion.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for arm_convolve_wrapper_s16
|
||
|
*
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* conv_params->input_offset : Not used
|
||
|
* conv_params->output_offset : Not used
|
||
|
* @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
|
||
|
* filter dimensions
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
*
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s8 convolution function
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_s8_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* Range of conv_params->input_offset : [-127, 128]
|
||
|
* Range of conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
|
||
|
* spatial filter dimensions
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Optional bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int8
|
||
|
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* 1. Supported framework: TensorFlow Lite micro
|
||
|
* 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
* 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for s8 convolution function
|
||
|
*
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
|
||
|
* are the spatial filter dimensions
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s16 convolution function
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_s16_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* conv_params->input_offset : Not used
|
||
|
* conv_params->output_offset : Not used
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int16
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
|
||
|
* spatial filter dimensions
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Optional bias data pointer. Data type: int64
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int16
|
||
|
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* 1. Supported framework: TensorFlow Lite micro
|
||
|
* 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
|
||
|
* 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output_data);
|
||
|
/**
|
||
|
* @brief Optimized s16 convolution function
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* conv_params->input_offset : Not used
|
||
|
* conv_params->output_offset : Not used
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int16
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
|
||
|
* spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not
|
||
|
exceed 512
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Optional bias data pointer. Data type: int64
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int16
|
||
|
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* 1. Supported framework: TensorFlow Lite micro
|
||
|
* 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
|
||
|
* 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
|
||
|
* 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for s16 convolution function
|
||
|
*
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
|
||
|
* are the spatial filter dimensions
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for fast s16 convolution function
|
||
|
*
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
|
||
|
* are the spatial filter dimensions
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic Q7 convolution function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic Q7 convolution function (non-square shape)
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in_x input tensor dimension x
|
||
|
* @param[in] dim_im_in_y input tensor dimension y
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel_x filter kernel size x
|
||
|
* @param[in] dim_kernel_y filter kernel size y
|
||
|
* @param[in] padding_x padding size x
|
||
|
* @param[in] padding_y padding size y
|
||
|
* @param[in] stride_x convolution stride x
|
||
|
* @param[in] stride_y convolution stride y
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out_x output tensor dimension x
|
||
|
* @param[in] dim_im_out_y output tensor dimension y
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*/
|
||
|
arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in_x,
|
||
|
const uint16_t dim_im_in_y,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel_x,
|
||
|
const uint16_t dim_kernel_y,
|
||
|
const uint16_t padding_x,
|
||
|
const uint16_t padding_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out_x,
|
||
|
const uint16_t dim_im_out_y,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic Q15 convolution function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q15_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q15_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q15_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast Q7 convolution function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 4
|
||
|
* ch_im_out is multiple of 2
|
||
|
*/
|
||
|
arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast Q7 convolution function (non-sqaure shape)
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in_x input tensor dimension x
|
||
|
* @param[in] dim_im_in_y input tensor dimension y
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel_x filter kernel size x
|
||
|
* @param[in] dim_kernel_y filter kernel size y
|
||
|
* @param[in] padding_x padding size x
|
||
|
* @param[in] padding_y padding size y
|
||
|
* @param[in] stride_x convolution stride x
|
||
|
* @param[in] stride_y convolution stride y
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out_x output tensor dimension x
|
||
|
* @param[in] dim_im_out_y output tensor dimension y
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 4
|
||
|
* ch_im_out is multiple of 2
|
||
|
*/
|
||
|
|
||
|
arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in_x,
|
||
|
const uint16_t dim_im_in_y,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel_x,
|
||
|
const uint16_t dim_kernel_y,
|
||
|
const uint16_t padding_x,
|
||
|
const uint16_t padding_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out_x,
|
||
|
const uint16_t dim_im_out_y,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in_x input tensor dimension x
|
||
|
* @param[in] dim_im_in_y input tensor dimension y
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel_x filter kernel size x
|
||
|
* @param[in] dim_kernel_y filter kernel size y
|
||
|
* @param[in] padding_x padding size x
|
||
|
* @param[in] padding_y padding size y
|
||
|
* @param[in] stride_x convolution stride x
|
||
|
* @param[in] stride_y convolution stride y
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out_x output tensor dimension x
|
||
|
* @param[in] dim_im_out_y output tensor dimension y
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
|
||
|
* <code>ARM_MATH_SUCCESS</code> on successful completion.
|
||
|
*
|
||
|
* This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
|
||
|
* and dim_kernel_y=1). It can be used for
|
||
|
* second half of MobileNets after depthwise separable convolution.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 4
|
||
|
* ch_im_out is multiple of 2
|
||
|
*/
|
||
|
arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in_x,
|
||
|
const uint16_t dim_im_in_y,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel_x,
|
||
|
const uint16_t dim_kernel_y,
|
||
|
const uint16_t padding_x,
|
||
|
const uint16_t padding_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out_x,
|
||
|
const uint16_t dim_im_out_y,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast s8 version for 1x1 convolution (non-square shape)
|
||
|
*
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* Range of conv_params->input_offset : [-127, 128]
|
||
|
* Range of conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Optional bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int8
|
||
|
*
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
|
||
|
* <code>ARM_MATH_SUCCESS</code> on successful completion.
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework : TensorFlow Lite Micro
|
||
|
* - The following constrains on the arguments apply
|
||
|
* -# input_dims->c is a multiple of 4
|
||
|
* -# conv_params->padding.w = conv_params->padding.h = 0
|
||
|
* -# conv_params->stride.w = conv_params->stride.h = 1
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for arm_convolve_1x1_s8_fast
|
||
|
*
|
||
|
* @param[in] input_dims Input (activation) dimensions
|
||
|
* @return The function returns the required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief 1xn convolution
|
||
|
*
|
||
|
* @param[in, out] ctx Function context that contains the additional buffer if required by the function.
|
||
|
arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
|
||
|
* @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
|
||
|
* Range of conv_params->input_offset : [-127, 128]
|
||
|
* Range of conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
|
||
|
* spatial filter dimension
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Optional bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[out] output_data Output data pointer. Data type: int8
|
||
|
*
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
|
||
|
* <code>ARM_MATH_SUCCESS</code> on successful completion.
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework : TensorFlow Lite Micro
|
||
|
* - The following constrains on the arguments apply
|
||
|
* -# input_dims->n equals 1
|
||
|
* -# ouput_dims->w is a multiple of 4
|
||
|
* -# Explicit constraints(since it is for 1xN convolution)
|
||
|
* -## input_dims->h equals 1
|
||
|
* -## output_dims->h equals 1
|
||
|
* -## filter_dims->h equals 1
|
||
|
*@todo Remove constraint on output_dims->w to make the function generic.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_conv_params *conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required additional buffer size for 1xn convolution
|
||
|
*
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
|
||
|
* horizontal spatial filter dimension
|
||
|
* @return The function returns required buffer size(bytes)
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 version of convolution for RGB image
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This kernel is written exclusively for convolution with ch_im_in
|
||
|
* equals 3. This applies on the first layer of CNNs which has input
|
||
|
* image with RGB format.
|
||
|
*/
|
||
|
|
||
|
arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast Q15 convolution function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 2
|
||
|
* ch_im_out is multiple of 2
|
||
|
* dim_im_out is a multiple of 2
|
||
|
*/
|
||
|
|
||
|
arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q15_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q15_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q15_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Fast Q15 convolution function (non-sqaure shape)
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in_x input tensor dimension x
|
||
|
* @param[in] dim_im_in_y input tensor dimension y
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel_x filter kernel size x
|
||
|
* @param[in] dim_kernel_y filter kernel size y
|
||
|
* @param[in] padding_x padding size x
|
||
|
* @param[in] padding_y padding size y
|
||
|
* @param[in] stride_x convolution stride x
|
||
|
* @param[in] stride_y convolution stride y
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out_x output tensor dimension x
|
||
|
* @param[in] dim_im_out_y output tensor dimension y
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* @details
|
||
|
*
|
||
|
* <b>Buffer size:</b>
|
||
|
*
|
||
|
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
||
|
*
|
||
|
* bufferB size: 0
|
||
|
*
|
||
|
* <b>Input dimension constraints:</b>
|
||
|
*
|
||
|
* ch_im_in is multiple of 2
|
||
|
*
|
||
|
* ch_im_out is multipe of 2
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
|
||
|
const uint16_t dim_im_in_x,
|
||
|
const uint16_t dim_im_in_y,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q15_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel_x,
|
||
|
const uint16_t dim_kernel_y,
|
||
|
const uint16_t padding_x,
|
||
|
const uint16_t padding_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const q15_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q15_t *Im_out,
|
||
|
const uint16_t dim_im_out_x,
|
||
|
const uint16_t dim_im_out_y,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 depthwise separable convolution function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 2
|
||
|
* ch_im_out is multiple of 2
|
||
|
*/
|
||
|
|
||
|
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 depthwise separable convolution function (non-square shape)
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in_x input tensor dimension x
|
||
|
* @param[in] dim_im_in_y input tensor dimension y
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] wt pointer to kernel weights
|
||
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
||
|
* @param[in] dim_kernel_x filter kernel size x
|
||
|
* @param[in] dim_kernel_y filter kernel size y
|
||
|
* @param[in] padding_x padding sizes x
|
||
|
* @param[in] padding_y padding sizes y
|
||
|
* @param[in] stride_x convolution stride x
|
||
|
* @param[in] stride_y convolution stride y
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @param[in] dim_im_out_x output tensor dimension x
|
||
|
* @param[in] dim_im_out_y output tensor dimension y
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] bufferB pointer to buffer space for output
|
||
|
* @return The function returns either
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
||
|
*
|
||
|
* This function is the version with full list of optimization tricks, but with
|
||
|
* some contraints:
|
||
|
* ch_im_in is multiple of 2
|
||
|
* ch_im_out is multiple of 2
|
||
|
*/
|
||
|
arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
|
||
|
const uint16_t dim_im_in_x,
|
||
|
const uint16_t dim_im_in_y,
|
||
|
const uint16_t ch_im_in,
|
||
|
const q7_t *wt,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t dim_kernel_x,
|
||
|
const uint16_t dim_kernel_y,
|
||
|
const uint16_t padding_x,
|
||
|
const uint16_t padding_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const q7_t *bias,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
q7_t *Im_out,
|
||
|
const uint16_t dim_im_out_x,
|
||
|
const uint16_t dim_im_out_y,
|
||
|
q15_t *bufferA,
|
||
|
q7_t *bufferB);
|
||
|
|
||
|
/**
|
||
|
* @brief Wrapper function to pick the right optimized s8 depthwise convolution function
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if required.
|
||
|
* @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
|
||
|
* dw_conv_params->dilation is not used.
|
||
|
* Range of dw_conv_params->input_offset : [-127, 128]
|
||
|
* Range of dw_conv_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each
|
||
|
* output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Batch argument N is not used and assumed to be 1.
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int8
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful completion.
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - Picks one of the the following functions
|
||
|
* -# arm_depthwise_conv_s8()
|
||
|
* -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
|
||
|
* -# arm_depthwise_conv_s8_opt()
|
||
|
* - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
* - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the
|
||
|
* boundary.
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
|
||
|
*
|
||
|
* @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
|
||
|
* dw_conv_params->dilation is not used.
|
||
|
* Range of dw_conv_params->input_offset : [-127, 128]
|
||
|
* Range of dw_conv_params->input_offset : [-128, 127]
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Batch argument N is not used and assumed to be 1.
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @return Size of additional memory required for optimizations in bytes.
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* exists if additional memory is.
|
||
|
* @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
|
||
|
* dw_conv_params->dilation is not used.
|
||
|
* Range of dw_conv_params->input_offset : [-127, 128]
|
||
|
* Range of dw_conv_params->input_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each
|
||
|
* output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* Batch argument N is not used.
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int8
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* exists if additional memory is.
|
||
|
* @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
|
||
|
* conv_params->input_offset : Not used
|
||
|
* conv_params->output_offset : Not used
|
||
|
* @param[in] quant_params Per-channel quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to each
|
||
|
* output channel
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* Batch argument N is not used.
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int64
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int16
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
|
||
|
* the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
|
||
|
* argument details.
|
||
|
*
|
||
|
* @return The function returns one of the following
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors
|
||
|
* <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework : TensorFlow Lite Micro
|
||
|
* - The following constrains on the arguments apply
|
||
|
* -# Number of input channel equals number of output channels
|
||
|
* -# Filter height and width equals 3
|
||
|
* -# Padding along x is either 0 or 1.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
|
||
|
* Refer arm_depthwise_conv_s8() for function argument details.
|
||
|
*
|
||
|
* @return The function returns one of the following
|
||
|
* <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or
|
||
|
* ch_mult != 1
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
|
||
|
* for the following if MVE optimizations(Arm Helium Technology) are used.
|
||
|
* - Output shift
|
||
|
* - Output multiplier
|
||
|
* - Output bias
|
||
|
* - kernel
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - The following constrains on the arguments apply
|
||
|
* -# Number of input channel equals number of output channels or ch_mult equals 1
|
||
|
* - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
* - Reccomended when number of channels is 4 or greater.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for optimized s8 depthwise convolution
|
||
|
* function with constraint that in_channel equals out_channel.
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
|
||
|
* Batch argument N is not used.
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
|
||
|
* @return The function returns required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @defgroup FC Fully-connected Layer Functions
|
||
|
*
|
||
|
* Collection of fully-connected and matrix multiplication functions.
|
||
|
*
|
||
|
* Fully-connected layer is basically a matrix-vector multiplication
|
||
|
* with bias. The matrix is the weights and the input/output vectors
|
||
|
* are the activation values. Supported {weight, activation} precisions
|
||
|
* include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
|
||
|
*
|
||
|
* Here we have two types of kernel functions. The basic function
|
||
|
* implements the function using regular GEMV approach. The opt functions
|
||
|
* operates with weights in interleaved formats.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
*@brief Q7 basic fully-connected layer function
|
||
|
*@param[in] pV pointer to input vector
|
||
|
*@param[in] pM pointer to matrix weights
|
||
|
*@param[in] dim_vec length of the vector
|
||
|
*@param[in] num_of_rows number of rows in weight matrix
|
||
|
*@param[in] bias_shift amount of left-shift for bias
|
||
|
*@param[in] out_shift amount of right-shift for output
|
||
|
*@param[in] bias pointer to bias
|
||
|
*@param[in,out] pOut pointer to output vector
|
||
|
*@param[in,out] vec_buffer pointer to buffer space for input
|
||
|
*@return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_q7(const q7_t *pV,
|
||
|
const q7_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q7_t *bias,
|
||
|
q7_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s8 Fully Connected function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] fc_params Fully Connected layer parameters.
|
||
|
* Range of fc_params->input_offset : [-127, 128]
|
||
|
* fc_params->filter_offset : 0
|
||
|
* Range of fc_params->output_offset : [-128, 127]
|
||
|
* @param[in] quant_params Per-tensor quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to the output tensor.
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* Input dimension is taken as Nx(H * W * C_IN)
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
|
||
|
* N : accumulation depth and equals (H * W * C_IN) from input_dims
|
||
|
* C : output depth and equals C_OUT in output_dims
|
||
|
* H & W : Not used
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* N, H, W : Not used
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int32
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
|
||
|
* N : Batches
|
||
|
* C_OUT : Output depth
|
||
|
* H & W : Not used.
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int8
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
*/
|
||
|
arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_fc_params *fc_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int32_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for S8 basic fully-connected and
|
||
|
* matrix multiplication layer function for TF Lite
|
||
|
* @param[in] filter_dims dimension of filter
|
||
|
* @return The function returns required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Basic s16 Fully Connected function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] fc_params Fully Connected layer parameters.
|
||
|
* fc_params->input_offset : 0
|
||
|
* fc_params->filter_offset : 0
|
||
|
* fc_params->output_offset : 0
|
||
|
* @param[in] quant_params Per-tensor quantization info.
|
||
|
* It contains the multiplier and shift values to be applied to the output tensor.
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
|
||
|
* Input dimension is taken as Nx(H * W * C_IN)
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int16
|
||
|
* @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
|
||
|
* N : accumulation depth and equals (H * W * C_IN) from input_dims
|
||
|
* C : output depth and equals C_OUT in output_dims
|
||
|
* H & W : Not used
|
||
|
* @param[in] filter_data Filter data pointer. Data type: int8
|
||
|
* @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
|
||
|
* N, H, W : Not used
|
||
|
* @param[in] bias_data Bias data pointer. Data type: int64
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
|
||
|
* N : Batches
|
||
|
* C_OUT : Output depth
|
||
|
* H & W : Not used.
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int16
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported framework: TensorFlow Lite
|
||
|
* - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
|
||
|
*/
|
||
|
arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_fc_params *fc_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *filter_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for S16 basic fully-connected and
|
||
|
* matrix multiplication layer function for TF Lite
|
||
|
* @param[in] filter_dims dimension of filter
|
||
|
* @return The function returns required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 opt fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_q7_opt(const q7_t *pV,
|
||
|
const q7_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q7_t *bias,
|
||
|
q7_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Q15 basic fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_q15(const q15_t *pV,
|
||
|
const q15_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q15_t *bias,
|
||
|
q15_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Q15 opt fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_q15_opt(const q15_t *pV,
|
||
|
const q15_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q15_t *bias,
|
||
|
q15_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Mixed Q15-Q7 fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
|
||
|
const q7_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q7_t *bias,
|
||
|
q15_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Mixed Q15-Q7 opt fully-connected layer function
|
||
|
* @param[in] pV pointer to input vector
|
||
|
* @param[in] pM pointer to matrix weights
|
||
|
* @param[in] dim_vec length of the vector
|
||
|
* @param[in] num_of_rows number of rows in weight matrix
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias pointer to bias
|
||
|
* @param[in,out] pOut pointer to output vector
|
||
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
|
||
|
const q7_t *pM,
|
||
|
const uint16_t dim_vec,
|
||
|
const uint16_t num_of_rows,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q7_t *bias,
|
||
|
q15_t *pOut,
|
||
|
q15_t *vec_buffer);
|
||
|
|
||
|
/**
|
||
|
* @brief Matrix-Multiplication Kernels for Convolution
|
||
|
*
|
||
|
* These functions are used within convolution layer functions for
|
||
|
* matrix multiplication.
|
||
|
*
|
||
|
* The implementation is similar to CMSIS-DSP arm_mat_mult functions
|
||
|
* with one Q7 and one Q15 operands. The Q15 operand is the im2col
|
||
|
* output which is always with 2 columns.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Matrix-multiplication function for convolution
|
||
|
* @param[in] pA pointer to operand A
|
||
|
* @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
|
||
|
* @param[in] ch_im_out numRow of A
|
||
|
* @param[in] numCol_A numCol of A
|
||
|
* @param[in] bias_shift amount of left-shift for bias
|
||
|
* @param[in] out_shift amount of right-shift for output
|
||
|
* @param[in] bias the bias
|
||
|
* @param[in,out] pOut pointer to output
|
||
|
* @return The function returns the incremented output pointer
|
||
|
*/
|
||
|
|
||
|
q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
|
||
|
const q15_t *pInBuffer,
|
||
|
const uint16_t ch_im_out,
|
||
|
const uint16_t numCol_A,
|
||
|
const uint16_t bias_shift,
|
||
|
const uint16_t out_shift,
|
||
|
const q7_t *bias,
|
||
|
q7_t *pOut);
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Other functions
|
||
|
* These layers are typically not timing critical
|
||
|
* Basic implementation is supported here
|
||
|
*/
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
/**
|
||
|
* @defgroup BasicMath Basic math functions
|
||
|
*
|
||
|
* Elementwise add and multiplication functions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief s8 elementwise add of two vectors
|
||
|
* @param[in] input_1_vect pointer to input vector 1
|
||
|
* @param[in] input_2_vect pointer to input vector 2
|
||
|
* @param[in] input_1_offset offset for input 1. Range: -127 to 128
|
||
|
* @param[in] input_1_mult multiplier for input 1
|
||
|
* @param[in] input_1_shift shift for input 1
|
||
|
* @param[in] input_2_offset offset for input 2. Range: -127 to 128
|
||
|
* @param[in] input_2_mult multiplier for input 2
|
||
|
* @param[in] input_2_shift shift for input 2
|
||
|
* @param[in] left_shift input left shift
|
||
|
* @param[in,out] output pointer to output vector
|
||
|
* @param[in] out_offset output offset. Range: -128 to 127
|
||
|
* @param[in] out_mult output multiplier
|
||
|
* @param[in] out_shift output shift
|
||
|
* @param[in] out_activation_min minimum value to clamp output to. Min: -128
|
||
|
* @param[in] out_activation_max maximum value to clamp output to. Max: 127
|
||
|
* @param[in] block_size number of samples
|
||
|
* @return The function returns ARM_MATH_SUCCESS
|
||
|
*/
|
||
|
arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
|
||
|
const int8_t *input_2_vect,
|
||
|
const int32_t input_1_offset,
|
||
|
const int32_t input_1_mult,
|
||
|
const int32_t input_1_shift,
|
||
|
const int32_t input_2_offset,
|
||
|
const int32_t input_2_mult,
|
||
|
const int32_t input_2_shift,
|
||
|
const int32_t left_shift,
|
||
|
int8_t *output,
|
||
|
const int32_t out_offset,
|
||
|
const int32_t out_mult,
|
||
|
const int32_t out_shift,
|
||
|
const int32_t out_activation_min,
|
||
|
const int32_t out_activation_max,
|
||
|
const int32_t block_size);
|
||
|
|
||
|
/**
|
||
|
* @brief s16 elementwise add of two vectors
|
||
|
* @param[in] input_1_vect pointer to input vector 1
|
||
|
* @param[in] input_2_vect pointer to input vector 2
|
||
|
* @param[in] input_1_offset offset for input 1. Not used.
|
||
|
* @param[in] input_1_mult multiplier for input 1
|
||
|
* @param[in] input_1_shift shift for input 1
|
||
|
* @param[in] input_2_offset offset for input 2. Not used.
|
||
|
* @param[in] input_2_mult multiplier for input 2
|
||
|
* @param[in] input_2_shift shift for input 2
|
||
|
* @param[in] left_shift input left shift
|
||
|
* @param[in,out] output pointer to output vector
|
||
|
* @param[in] out_offset output offset. Not used.
|
||
|
* @param[in] out_mult output multiplier
|
||
|
* @param[in] out_shift output shift
|
||
|
* @param[in] out_activation_min minimum value to clamp output to. Min: -32768
|
||
|
* @param[in] out_activation_max maximum value to clamp output to. Max: 32767
|
||
|
* @param[in] block_size number of samples
|
||
|
* @return The function returns ARM_MATH_SUCCESS
|
||
|
*/
|
||
|
arm_status arm_elementwise_add_s16(const int16_t *input_1_vect,
|
||
|
const int16_t *input_2_vect,
|
||
|
const int32_t input_1_offset,
|
||
|
const int32_t input_1_mult,
|
||
|
const int32_t input_1_shift,
|
||
|
const int32_t input_2_offset,
|
||
|
const int32_t input_2_mult,
|
||
|
const int32_t input_2_shift,
|
||
|
const int32_t left_shift,
|
||
|
int16_t *output,
|
||
|
const int32_t out_offset,
|
||
|
const int32_t out_mult,
|
||
|
const int32_t out_shift,
|
||
|
const int32_t out_activation_min,
|
||
|
const int32_t out_activation_max,
|
||
|
const int32_t block_size);
|
||
|
|
||
|
/**
|
||
|
* @brief s8 elementwise multiplication
|
||
|
* @param[in] input_1_vect pointer to input vector 1
|
||
|
* @param[in] input_2_vect pointer to input vector 2
|
||
|
* @param[in] input_1_offset offset for input 1. Range: -127 to 128
|
||
|
* @param[in] input_2_offset offset for input 2. Range: -127 to 128
|
||
|
* @param[in,out] output pointer to output vector
|
||
|
* @param[in] out_offset output offset. Range: -128 to 127
|
||
|
* @param[in] out_mult output multiplier
|
||
|
* @param[in] out_shift output shift
|
||
|
* @param[in] out_activation_min minimum value to clamp output to. Min: -128
|
||
|
* @param[in] out_activation_max maximum value to clamp output to. Max: 127
|
||
|
* @param[in] block_size number of samples
|
||
|
* @return The function returns ARM_MATH_SUCCESS
|
||
|
*
|
||
|
* @details Supported framework: TensorFlow Lite micro
|
||
|
*/
|
||
|
arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
|
||
|
const int8_t *input_2_vect,
|
||
|
const int32_t input_1_offset,
|
||
|
const int32_t input_2_offset,
|
||
|
int8_t *output,
|
||
|
const int32_t out_offset,
|
||
|
const int32_t out_mult,
|
||
|
const int32_t out_shift,
|
||
|
const int32_t out_activation_min,
|
||
|
const int32_t out_activation_max,
|
||
|
const int32_t block_size);
|
||
|
|
||
|
/**
|
||
|
* @brief s16 elementwise multiplication
|
||
|
* @param[in] input_1_vect pointer to input vector 1
|
||
|
* @param[in] input_2_vect pointer to input vector 2
|
||
|
* @param[in] input_1_offset offset for input 1. Not used.
|
||
|
* @param[in] input_2_offset offset for input 2. Not used.
|
||
|
* @param[in,out] output pointer to output vector
|
||
|
* @param[in] out_offset output offset. Not used.
|
||
|
* @param[in] out_mult output multiplier
|
||
|
* @param[in] out_shift output shift
|
||
|
* @param[in] out_activation_min minimum value to clamp output to. Min: -32768
|
||
|
* @param[in] out_activation_max maximum value to clamp output to. Max: 32767
|
||
|
* @param[in] block_size number of samples
|
||
|
* @return The function returns ARM_MATH_SUCCESS
|
||
|
*
|
||
|
* @details Supported framework: TensorFlow Lite micro
|
||
|
*/
|
||
|
arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect,
|
||
|
const int16_t *input_2_vect,
|
||
|
const int32_t input_1_offset,
|
||
|
const int32_t input_2_offset,
|
||
|
int16_t *output,
|
||
|
const int32_t out_offset,
|
||
|
const int32_t out_mult,
|
||
|
const int32_t out_shift,
|
||
|
const int32_t out_activation_min,
|
||
|
const int32_t out_activation_max,
|
||
|
const int32_t block_size);
|
||
|
|
||
|
/**
|
||
|
* @defgroup Acti Activation Functions
|
||
|
*
|
||
|
* Perform activation layers, including ReLU (Rectified Linear Unit),
|
||
|
* sigmoid and tanh
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 RELU function
|
||
|
* @param[in,out] data pointer to input
|
||
|
* @param[in] size number of elements
|
||
|
* @return none.
|
||
|
*/
|
||
|
|
||
|
void arm_relu_q7(q7_t *data, uint16_t size);
|
||
|
|
||
|
/**
|
||
|
* @brief s8 ReLU6 function
|
||
|
* @param[in,out] data pointer to input
|
||
|
* @param[in] size number of elements
|
||
|
*/
|
||
|
|
||
|
void arm_relu6_s8(q7_t *data, uint16_t size);
|
||
|
|
||
|
/**
|
||
|
* @brief Q15 RELU function
|
||
|
* @param[in,out] data pointer to input
|
||
|
* @param[in] size number of elements
|
||
|
* @return none.
|
||
|
*/
|
||
|
|
||
|
void arm_relu_q15(q15_t *data, uint16_t size);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 neural network activation function using direct table look-up
|
||
|
* @param[in,out] data pointer to input
|
||
|
* @param[in] size number of elements
|
||
|
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||
|
* @param[in] type type of activation functions
|
||
|
* @return none.
|
||
|
*/
|
||
|
|
||
|
void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
|
||
|
|
||
|
/**
|
||
|
* @brief Q15 neural network activation function using direct table look-up
|
||
|
* @param[in,out] data pointer to input
|
||
|
* @param[in] size number of elements
|
||
|
* @param[in] int_width bit-width of the integer part, assume to be smaller than 3
|
||
|
* @param[in] type type of activation functions
|
||
|
* @return none.
|
||
|
*
|
||
|
* @details
|
||
|
*
|
||
|
* This is the direct table look-up approach.
|
||
|
*
|
||
|
* Assume here the integer part of the fixed-point is <= 3.
|
||
|
* More than 3 just not making much sense, makes no difference with
|
||
|
* saturation followed by any of these activation functions.
|
||
|
*/
|
||
|
|
||
|
void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
|
||
|
|
||
|
/**
|
||
|
* @defgroup Pooling Pooling Functions
|
||
|
*
|
||
|
* Perform pooling functions, including max pooling and average pooling
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 max pooling function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_maxpool_q7_HWC(q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const uint16_t dim_im_out,
|
||
|
q7_t *bufferA,
|
||
|
q7_t *Im_out);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 average pooling function
|
||
|
* @param[in] Im_in pointer to input tensor
|
||
|
* @param[in] dim_im_in input tensor dimension
|
||
|
* @param[in] ch_im_in number of input tensor channels
|
||
|
* @param[in] dim_kernel filter kernel size
|
||
|
* @param[in] padding padding sizes
|
||
|
* @param[in] stride convolution stride
|
||
|
* @param[in] dim_im_out output tensor dimension
|
||
|
* @param[in,out] bufferA pointer to buffer space for input
|
||
|
* @param[in,out] Im_out pointer to output tensor
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_avepool_q7_HWC(q7_t *Im_in,
|
||
|
const uint16_t dim_im_in,
|
||
|
const uint16_t ch_im_in,
|
||
|
const uint16_t dim_kernel,
|
||
|
const uint16_t padding,
|
||
|
const uint16_t stride,
|
||
|
const uint16_t dim_im_out,
|
||
|
q7_t *bufferA,
|
||
|
q7_t *Im_out);
|
||
|
|
||
|
/**
|
||
|
* @brief s8 average pooling function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] pool_params Pooling parameters
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Argument 'N' is not used.
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
|
||
|
* Argument N and C are not used.
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
|
||
|
* Argument N is not used.
|
||
|
* C_OUT equals C_IN.
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int8
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported Framework: TensorFlow Lite
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_pool_params *pool_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for S8 average pooling function
|
||
|
* @param[in] dim_dst_width output tensor dimension
|
||
|
* @param[in] ch_src number of input tensor channels
|
||
|
* @return The function returns required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
|
||
|
|
||
|
/**
|
||
|
* @brief s16 average pooling function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] pool_params Pooling parameters
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Argument 'N' is not used.
|
||
|
* @param[in] input_data Input (activation) data pointer. Data type: int16
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
|
||
|
* Argument N and C are not used.
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
|
||
|
* Argument N is not used.
|
||
|
* C_OUT equals C_IN.
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int16
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported Framework: TensorFlow Lite
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_avgpool_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_pool_params *pool_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const int16_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
int16_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief Get the required buffer size for S16 average pooling function
|
||
|
* @param[in] dim_dst_width output tensor dimension
|
||
|
* @param[in] ch_src number of input tensor channels
|
||
|
* @return The function returns required buffer size in bytes
|
||
|
*
|
||
|
*/
|
||
|
int32_t arm_avgpool_s16_get_buffer_size(const int dim_dst_width, const int ch_src);
|
||
|
|
||
|
/**
|
||
|
* @brief s8 max pooling function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] pool_params Pooling parameters
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Argument 'N' is not used.
|
||
|
* @param[in] input_data Input (activation) data pointer. The input tensor must not
|
||
|
* overlap with the output tensor. Data type: int8
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
|
||
|
* Argument N and C are not used.
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
|
||
|
* Argument N is not used.
|
||
|
* C_OUT equals C_IN.
|
||
|
* @param[in, out] output_data Output data pointer. Data type: int8
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported Framework: TensorFlow Lite
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_pool_params *pool_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief s16 max pooling function.
|
||
|
*
|
||
|
* @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
|
||
|
* definition file to see if an additional buffer is required.
|
||
|
* Optional function {API}_get_buffer_size() provides the buffer
|
||
|
* size if an additional buffer is required.
|
||
|
* @param[in] pool_params Pooling parameters
|
||
|
* @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
|
||
|
* Argument 'N' is not used.
|
||
|
* @param[in] src Input (activation) data pointer. The input tensor must not
|
||
|
* overlap with the output tensor. Data type: int16
|
||
|
* @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
|
||
|
* Argument N and C are not used.
|
||
|
* @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
|
||
|
* Argument N is not used.
|
||
|
* C_OUT equals C_IN.
|
||
|
* @param[in, out] dst Output data pointer. Data type: int16
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @details
|
||
|
* - Supported Framework: TensorFlow Lite
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_max_pool_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_pool_params *pool_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const int16_t *src,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
int16_t *dst);
|
||
|
|
||
|
/**
|
||
|
* @defgroup Softmax Softmax Functions
|
||
|
*
|
||
|
* EXP(2) based softmax functions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 softmax function
|
||
|
* @param[in] vec_in pointer to input vector
|
||
|
* @param[in] dim_vec input vector dimension
|
||
|
* @param[out] p_out pointer to output vector
|
||
|
*
|
||
|
* @note This function is an optimized version which is not bit-accurate with
|
||
|
* TensorFlow Lite's kernel
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
|
||
|
|
||
|
/**
|
||
|
* @brief Q7 softmax function with batch parameter
|
||
|
* @param[in] vec_in pointer to input vector
|
||
|
* @param[in] nb_batches number of batches
|
||
|
* @param[in] dim_vec input vector dimension
|
||
|
* @param[out] p_out pointer to output vector
|
||
|
* @return none.
|
||
|
*
|
||
|
* @note This function is an optimized version which is not bit-accurate with
|
||
|
* TensorFlow Lite's kernel
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
|
||
|
/**
|
||
|
* @brief Q15 softmax function
|
||
|
* @param[in] vec_in pointer to input vector
|
||
|
* @param[in] dim_vec input vector dimension
|
||
|
* @param[out] p_out pointer to output vector
|
||
|
* @return none.
|
||
|
*
|
||
|
* @note This function is an optimized version which is not bit-accurate with
|
||
|
* TensorFlow Lite's kernel
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
|
||
|
|
||
|
/**
|
||
|
* @brief S8 softmax function
|
||
|
* @param[in] input Pointer to the input tensor
|
||
|
* @param[in] num_rows Number of rows in the input tensor
|
||
|
* @param[in] row_size Number of elements in each input row
|
||
|
* @param[in] mult Input quantization multiplier
|
||
|
* @param[in] shift Input quantization shift within the range [0, 31]
|
||
|
* @param[in] diff_min Minimum difference with max in row. Used to check if
|
||
|
* the quantized exponential operation can be performed
|
||
|
* @param[out] output Pointer to the output tensor
|
||
|
*
|
||
|
* @note Supported framework: TensorFlow Lite micro (bit-accurate)
|
||
|
*
|
||
|
*/
|
||
|
void arm_softmax_s8(const int8_t *input,
|
||
|
const int32_t num_rows,
|
||
|
const int32_t row_size,
|
||
|
const int32_t mult,
|
||
|
const int32_t shift,
|
||
|
const int32_t diff_min,
|
||
|
int8_t *output);
|
||
|
|
||
|
/**
|
||
|
* @brief S8 to s16 softmax function
|
||
|
* @param[in] input Pointer to the input tensor
|
||
|
* @param[in] num_rows Number of rows in the input tensor
|
||
|
* @param[in] row_size Number of elements in each input row
|
||
|
* @param[in] mult Input quantization multiplier
|
||
|
* @param[in] shift Input quantization shift within the range [0, 31]
|
||
|
* @param[in] diff_min Minimum difference with max in row. Used to check if
|
||
|
* the quantized exponential operation can be performed
|
||
|
* @param[out] output Pointer to the output tensor
|
||
|
*
|
||
|
* @note Supported framework: TensorFlow Lite micro (bit-accurate)
|
||
|
*
|
||
|
*/
|
||
|
void arm_softmax_s8_s16(const int8_t *input,
|
||
|
const int32_t num_rows,
|
||
|
const int32_t row_size,
|
||
|
const int32_t mult,
|
||
|
const int32_t shift,
|
||
|
const int32_t diff_min,
|
||
|
int16_t *output);
|
||
|
|
||
|
/**
|
||
|
* @brief S16 softmax function
|
||
|
* @param[in] input Pointer to the input tensor
|
||
|
* @param[in] num_rows Number of rows in the input tensor
|
||
|
* @param[in] row_size Number of elements in each input row
|
||
|
* @param[in] mult Input quantization multiplier
|
||
|
* @param[in] shift Input quantization shift within the range [0, 31]
|
||
|
* @param[in] softmax_params Softmax s16 layer parameters with two pointers to LUTs speficied below.
|
||
|
* For indexing the high 9 bits are used and 7 remaining for interpolation.
|
||
|
* That means 512 entries for the 9-bit indexing and 1 extra for interpolation, i.e. 513
|
||
|
* values for each LUT.
|
||
|
* - Lookup table for exp(x), where x uniform distributed between [-10.0 , 0.0]
|
||
|
* - Lookup table for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0]
|
||
|
* @param[out] output Pointer to the output tensor
|
||
|
* @return The function returns
|
||
|
* <code>ARM_MATH_ARGUMENT_ERROR</code> if LUTs are NULL
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
* @note Supported framework: TensorFlow Lite micro (bit-accurate)
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_softmax_s16(const int16_t *input,
|
||
|
const int32_t num_rows,
|
||
|
const int32_t row_size,
|
||
|
const int32_t mult,
|
||
|
const int32_t shift,
|
||
|
const cmsis_nn_softmax_lut_s16 *softmax_params,
|
||
|
int16_t *output);
|
||
|
|
||
|
/**
|
||
|
* @brief U8 softmax function
|
||
|
* @param[in] input Pointer to the input tensor
|
||
|
* @param[in] num_rows Number of rows in the input tensor
|
||
|
* @param[in] row_size Number of elements in each input row
|
||
|
* @param[in] mult Input quantization multiplier
|
||
|
* @param[in] shift Input quantization shift within the range [0, 31]
|
||
|
* @param[in] diff_min Minimum difference with max in row. Used to check if
|
||
|
* the quantized exponential operation can be performed
|
||
|
* @param[out] output Pointer to the output tensor
|
||
|
*
|
||
|
* @note Supported framework: TensorFlow Lite micro (bit-accurate)
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_softmax_u8(const uint8_t *input,
|
||
|
const int32_t num_rows,
|
||
|
const int32_t row_size,
|
||
|
const int32_t mult,
|
||
|
const int32_t shift,
|
||
|
const int32_t diff_min,
|
||
|
uint8_t *output);
|
||
|
|
||
|
/**
|
||
|
* @brief uint8 depthwise convolution function with asymmetric quantization
|
||
|
* Unless specified otherwise, arguments are mandatory.
|
||
|
*
|
||
|
* @param[in] input Pointer to input tensor
|
||
|
* @param[in] input_x Width of input tensor
|
||
|
* @param[in] input_y Height of input tensor
|
||
|
* @param[in] input_ch Channels in input tensor
|
||
|
* @param[in] kernel Pointer to kernel weights
|
||
|
* @param[in] kernel_x Width of kernel
|
||
|
* @param[in] kernel_y Height of kernel
|
||
|
* @param[in] ch_mult Number of channel multiplier
|
||
|
* @param[in] pad_x Padding sizes x
|
||
|
* @param[in] pad_y Padding sizes y
|
||
|
* @param[in] stride_x stride along the width
|
||
|
* @param[in] stride_y stride along the height
|
||
|
* @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
|
||
|
* @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
|
||
|
* @param[in] bias Pointer to optional bias values. If no bias is
|
||
|
* availble, NULL is expected
|
||
|
* @param[in] input_offset Input tensor zero offset
|
||
|
* @param[in] filter_offset Kernel tensor zero offset
|
||
|
* @param[in] output_offset Output tensor zero offset
|
||
|
* @param[in,out] output Pointer to output tensor
|
||
|
* @param[in] output_x Width of output tensor
|
||
|
* @param[in] output_y Height of output tensor
|
||
|
* @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
|
||
|
* @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
|
||
|
* @param[in] out_shift Amount of right-shift for output
|
||
|
* @param[in] out_mult Output multiplier for requantization
|
||
|
* @return The function returns the following
|
||
|
* <code>ARM_MATH_SUCCESS</code> - Successful operation
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_ch,
|
||
|
const uint8_t *kernel,
|
||
|
const uint16_t kernel_x,
|
||
|
const uint16_t kernel_y,
|
||
|
const int16_t ch_mult,
|
||
|
const int16_t pad_x,
|
||
|
const int16_t pad_y,
|
||
|
const int16_t stride_x,
|
||
|
const int16_t stride_y,
|
||
|
const int16_t dilation_x,
|
||
|
const int16_t dilation_y,
|
||
|
const int32_t *bias,
|
||
|
const int32_t input_offset,
|
||
|
const int32_t filter_offset,
|
||
|
const int32_t output_offset,
|
||
|
uint8_t *output,
|
||
|
const uint16_t output_x,
|
||
|
const uint16_t output_y,
|
||
|
const int32_t output_activation_min,
|
||
|
const int32_t output_activation_max,
|
||
|
const int32_t out_shift,
|
||
|
const int32_t out_mult);
|
||
|
|
||
|
/**
|
||
|
* @defgroup Reshape Reshape Functions
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Reshape a s8 vector into another with different shape
|
||
|
* @param[in] input points to the s8 input vector
|
||
|
* @param[out] output points to the s8 output vector
|
||
|
* @param[in] total_size total size of the input and output vectors in bytes
|
||
|
*
|
||
|
* @note The output is expected to be in a memory area that does not overlap with the input's
|
||
|
*
|
||
|
*/
|
||
|
void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
|
||
|
|
||
|
/**
|
||
|
* @defgroup Concatenation Concatenation Functions
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
|
||
|
* This function should be called for each input tensor to concatenate. The argument offset_x
|
||
|
* will be used to store the input tensor in the correct position in the output tensor
|
||
|
*
|
||
|
* i.e. offset_x = 0
|
||
|
* for(i = 0 i < num_input_tensors; ++i)
|
||
|
* {
|
||
|
* arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
|
||
|
* offset_x += input_x[i]
|
||
|
* }
|
||
|
*
|
||
|
* This function assumes that the output tensor has:
|
||
|
* -# The same height of the input tensor
|
||
|
* -# The same number of channels of the input tensor
|
||
|
* -# The same batch size of the input tensor
|
||
|
*
|
||
|
* Unless specified otherwise, arguments are mandatory.
|
||
|
*
|
||
|
* @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
|
||
|
* does not involve any arithmetic operation
|
||
|
*
|
||
|
* @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
|
||
|
* @param[in] input_x Width of input tensor
|
||
|
* @param[in] input_y Height of input tensor
|
||
|
* @param[in] input_z Channels in input tensor
|
||
|
* @param[in] input_w Batch size in input tensor
|
||
|
* @param[out] output Pointer to output tensor. Expected to be at least
|
||
|
* (input_x * input_y * input_z * input_w) + offset_x
|
||
|
* bytes.
|
||
|
* @param[in] output_x Width of output tensor
|
||
|
* @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
|
||
|
* It is user responsibility to provide the correct value
|
||
|
*
|
||
|
* <b> Input constraints</b>
|
||
|
* offset_x is less than output_x
|
||
|
*
|
||
|
*/
|
||
|
void arm_concatenation_s8_x(const int8_t *input,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_z,
|
||
|
const uint16_t input_w,
|
||
|
int8_t *output,
|
||
|
const uint16_t output_x,
|
||
|
const uint32_t offset_x);
|
||
|
|
||
|
/**
|
||
|
* @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
|
||
|
* This function should be called for each input tensor to concatenate. The argument offset_y
|
||
|
* will be used to store the input tensor in the correct position in the output tensor
|
||
|
*
|
||
|
* i.e. offset_y = 0
|
||
|
* for(i = 0 i < num_input_tensors; ++i)
|
||
|
* {
|
||
|
* arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
|
||
|
* offset_y += input_y[i]
|
||
|
* }
|
||
|
*
|
||
|
* This function assumes that the output tensor has:
|
||
|
* -# The same width of the input tensor
|
||
|
* -# The same number of channels of the input tensor
|
||
|
* -# The same batch size of the input tensor
|
||
|
*
|
||
|
* Unless specified otherwise, arguments are mandatory.
|
||
|
*
|
||
|
* @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
|
||
|
* does not involve any arithmetic operation
|
||
|
*
|
||
|
* @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
|
||
|
* @param[in] input_x Width of input tensor
|
||
|
* @param[in] input_y Height of input tensor
|
||
|
* @param[in] input_z Channels in input tensor
|
||
|
* @param[in] input_w Batch size in input tensor
|
||
|
* @param[out] output Pointer to output tensor. Expected to be at least
|
||
|
* (input_z * input_w * input_x * input_y) + offset_y
|
||
|
* bytes.
|
||
|
* @param[in] output_y Height of output tensor
|
||
|
* @param[in] offset_y The offset on the Y axis to start concatenating the input tensor
|
||
|
* It is user responsibility to provide the correct value
|
||
|
*
|
||
|
* <b> Input constraints</b>
|
||
|
* offset_y is less than output_y
|
||
|
*
|
||
|
*/
|
||
|
void arm_concatenation_s8_y(const int8_t *input,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_z,
|
||
|
const uint16_t input_w,
|
||
|
int8_t *output,
|
||
|
const uint16_t output_y,
|
||
|
const uint32_t offset_y);
|
||
|
|
||
|
/**
|
||
|
* @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
|
||
|
* This function should be called for each input tensor to concatenate. The argument offset_z
|
||
|
* will be used to store the input tensor in the correct position in the output tensor
|
||
|
*
|
||
|
* i.e. offset_z = 0
|
||
|
* for(i = 0 i < num_input_tensors; ++i)
|
||
|
* {
|
||
|
* arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
|
||
|
* offset_z += input_z[i]
|
||
|
* }
|
||
|
*
|
||
|
* This function assumes that the output tensor has:
|
||
|
* -# The same width of the input tensor
|
||
|
* -# The same height of the input tensor
|
||
|
* -# The same batch size of the input tensor
|
||
|
*
|
||
|
* Unless specified otherwise, arguments are mandatory.
|
||
|
*
|
||
|
* @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
|
||
|
* does not involve any arithmetic operation
|
||
|
*
|
||
|
* @param[in] input Pointer to input tensor. Input tensor must not overlap with output tensor.
|
||
|
* @param[in] input_x Width of input tensor
|
||
|
* @param[in] input_y Height of input tensor
|
||
|
* @param[in] input_z Channels in input tensor
|
||
|
* @param[in] input_w Batch size in input tensor
|
||
|
* @param[out] output Pointer to output tensor. Expected to be at least
|
||
|
* (input_x * input_y * input_z * input_w) + offset_z
|
||
|
* bytes.
|
||
|
* @param[in] output_z Channels in output tensor
|
||
|
* @param[in] offset_z The offset on the Z axis to start concatenating the input tensor
|
||
|
* It is user responsibility to provide the correct value
|
||
|
*
|
||
|
* <b> Input constraints</b>
|
||
|
* offset_z is less than output_z
|
||
|
*
|
||
|
*/
|
||
|
void arm_concatenation_s8_z(const int8_t *input,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_z,
|
||
|
const uint16_t input_w,
|
||
|
int8_t *output,
|
||
|
const uint16_t output_z,
|
||
|
const uint32_t offset_z);
|
||
|
|
||
|
/**
|
||
|
* @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
|
||
|
* This function should be called for each input tensor to concatenate. The argument offset_w
|
||
|
* will be used to store the input tensor in the correct position in the output tensor
|
||
|
*
|
||
|
* i.e. offset_w = 0
|
||
|
* for(i = 0 i < num_input_tensors; ++i)
|
||
|
* {
|
||
|
* arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
|
||
|
* offset_w += input_w[i]
|
||
|
* }
|
||
|
*
|
||
|
* This function assumes that the output tensor has:
|
||
|
* -# The same width of the input tensor
|
||
|
* -# The same height of the input tensor
|
||
|
* -# The same number o channels of the input tensor
|
||
|
*
|
||
|
* Unless specified otherwise, arguments are mandatory.
|
||
|
*
|
||
|
* @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
|
||
|
* does not involve any arithmetic operation
|
||
|
*
|
||
|
* @param[in] input Pointer to input tensor
|
||
|
* @param[in] input_x Width of input tensor
|
||
|
* @param[in] input_y Height of input tensor
|
||
|
* @param[in] input_z Channels in input tensor
|
||
|
* @param[in] input_w Batch size in input tensor
|
||
|
* @param[out] output Pointer to output tensor. Expected to be at least
|
||
|
* input_x * input_y * input_z * input_w
|
||
|
* bytes.
|
||
|
* @param[in] offset_w The offset on the W axis to start concatenating the input tensor
|
||
|
* It is user responsibility to provide the correct value
|
||
|
*
|
||
|
*/
|
||
|
void arm_concatenation_s8_w(const int8_t *input,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_z,
|
||
|
const uint16_t input_w,
|
||
|
int8_t *output,
|
||
|
const uint32_t offset_w);
|
||
|
/**
|
||
|
* @defgroup SVDF SVDF Layer Functions
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief s8 SVDF function with 8 bit state tensor and 8 bit time weights
|
||
|
*
|
||
|
* @param[in] input_ctx Temporary scratch buffer
|
||
|
* @param[in] output_ctx Temporary output scratch buffer
|
||
|
* @param[in] svdf_params SVDF Parameters
|
||
|
* Range of svdf_params->input_offset : [-128, 127]
|
||
|
* Range of svdf_params->output_offset : [-128, 127]
|
||
|
* @param[in] input_quant_params Input quantization parameters
|
||
|
* @param[in] output_quant_params Output quantization parameters
|
||
|
* @param[in] input_dims Input tensor dimensions
|
||
|
* @param[in] input_data Pointer to input tensor
|
||
|
* @param[in] state_dims State tensor dimensions
|
||
|
* @param[in] state_data Pointer to state tensor
|
||
|
* @param[in] weights_feature_dims Weights (feature) tensor dimensions
|
||
|
* @param[in] weights_feature_data Pointer to the weights (feature) tensor
|
||
|
* @param[in] weights_time_dims Weights (time) tensor dimensions
|
||
|
* @param[in] weights_time_data Pointer to the weights (time) tensor
|
||
|
* @param[in] bias_dims Bias tensor dimensions
|
||
|
* @param[in] bias_data Pointer to bias tensor
|
||
|
* @param[in] output_dims Output tensor dimensions
|
||
|
* @param[out] output_data Pointer to the output tensor
|
||
|
*
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* 1. Supported framework: TensorFlow Lite micro
|
||
|
* 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
|
||
|
const cmsis_nn_context *output_ctx,
|
||
|
const cmsis_nn_svdf_params *svdf_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *input_quant_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *output_quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *state_dims,
|
||
|
q7_t *state_data,
|
||
|
const cmsis_nn_dims *weights_feature_dims,
|
||
|
const q7_t *weights_feature_data,
|
||
|
const cmsis_nn_dims *weights_time_dims,
|
||
|
const q7_t *weights_time_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const q31_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
/**
|
||
|
* @brief s8 SVDF function with 16 bit state tensor and 16 bit time weights
|
||
|
*
|
||
|
* @param[in] input_ctx Temporary scratch buffer
|
||
|
* @param[in] output_ctx Temporary output scratch buffer
|
||
|
* @param[in] svdf_params SVDF Parameters
|
||
|
* Range of svdf_params->input_offset : [-128, 127]
|
||
|
* Range of svdf_params->output_offset : [-128, 127]
|
||
|
* @param[in] input_quant_params Input quantization parameters
|
||
|
* @param[in] output_quant_params Output quantization parameters
|
||
|
* @param[in] input_dims Input tensor dimensions
|
||
|
* @param[in] input_data Pointer to input tensor
|
||
|
* @param[in] state_dims State tensor dimensions
|
||
|
* @param[in] state_data Pointer to state tensor
|
||
|
* @param[in] weights_feature_dims Weights (feature) tensor dimensions
|
||
|
* @param[in] weights_feature_data Pointer to the weights (feature) tensor
|
||
|
* @param[in] weights_time_dims Weights (time) tensor dimensions
|
||
|
* @param[in] weights_time_data Pointer to the weights (time) tensor
|
||
|
* @param[in] bias_dims Bias tensor dimensions
|
||
|
* @param[in] bias_data Pointer to bias tensor
|
||
|
* @param[in] output_dims Output tensor dimensions
|
||
|
* @param[out] output_data Pointer to the output tensor
|
||
|
*
|
||
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
||
|
*
|
||
|
* @details
|
||
|
* 1. Supported framework: TensorFlow Lite micro
|
||
|
* 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx,
|
||
|
const cmsis_nn_context *output_ctx,
|
||
|
const cmsis_nn_svdf_params *svdf_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *input_quant_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *output_quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *state_dims,
|
||
|
q15_t *state_data,
|
||
|
const cmsis_nn_dims *weights_feature_dims,
|
||
|
const q7_t *weights_feature_data,
|
||
|
const cmsis_nn_dims *weights_time_dims,
|
||
|
const q15_t *weights_time_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const q31_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data);
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif
|