stm32f407-openocd/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c

336 lines
13 KiB
C
Raw Normal View History

2024-06-12 08:32:58 +00:00
/*
* Copyright (C) 2010-2021 Arm Limited or its affiliates.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_convolve_s8.c
* Description: s8 version of convolution using symmetric quantization.
*
* $Date: December 14, 2021
* $Revision: V.2.1.0
*
* Target Processor: Cortex-M cores
*
* -------------------------------------------------------------------- */
#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
/*
* Basic s8 convolution function.
*
* Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
* are multiples of 4 or atleast greater than 4.
*
*/
arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
const cmsis_nn_conv_params *conv_params,
const cmsis_nn_per_channel_quant_params *quant_params,
const cmsis_nn_dims *input_dims,
const q7_t *input_data,
const cmsis_nn_dims *filter_dims,
const q7_t *filter_data,
const cmsis_nn_dims *bias_dims,
const int32_t *bias_data,
const cmsis_nn_dims *output_dims,
q7_t *output_data)
{
(void)bias_dims;
if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
{
return ARM_MATH_ARGUMENT_ERROR;
}
q15_t *buffer_a = (q15_t *)ctx->buf;
const int32_t input_batches = input_dims->n;
const uint16_t input_x = input_dims->w;
const uint16_t input_y = input_dims->h;
const uint16_t input_ch = input_dims->c;
const uint16_t kernel_x = filter_dims->w;
const uint16_t kernel_y = filter_dims->h;
const uint16_t output_x = output_dims->w;
const uint16_t output_y = output_dims->h;
const uint16_t output_ch = output_dims->c;
const uint16_t pad_x = conv_params->padding.w;
const uint16_t pad_y = conv_params->padding.h;
const uint16_t stride_x = conv_params->stride.w;
const uint16_t stride_y = conv_params->stride.h;
const int32_t input_offset = conv_params->input_offset;
const int32_t out_offset = conv_params->output_offset;
const int32_t out_activation_min = conv_params->activation.min;
const int32_t out_activation_max = conv_params->activation.max;
int32_t *output_mult = quant_params->multiplier;
int32_t *output_shift = quant_params->shift;
int i_batch;
for (i_batch = 0; i_batch < input_batches; i_batch++)
{
#if defined(ARM_MATH_MVEI)
/* Generate upto four columns from the input tensor a GEMM computation */
q7_t *im2col_buf = (q7_t *)buffer_a;
q7_t *out = output_data;
int32_t buffer_fill_cnt = 0;
int32_t padded = 0;
const int32_t num_elem = kernel_x * kernel_y * input_ch;
const int32_t dilation_x = conv_params->dilation.w;
const int32_t dilation_y = conv_params->dilation.h;
/* This part implements the im2col function */
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
{
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
{
const int32_t base_idx_x = stride_x * i_out_x - pad_x;
const int32_t base_idx_y = stride_y * i_out_y - pad_y;
for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
{
for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
{
const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
{
memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
padded = 1;
}
else
{
arm_memcpy_q7(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
}
im2col_buf += input_ch;
}
}
buffer_fill_cnt++;
/* Computation is filed for every 4 columns */
if (buffer_fill_cnt == 4 && (padded == 0))
{
buffer_fill_cnt = 0;
out = arm_nn_mat_mul_core_4x_s8(num_elem,
num_elem,
(q7_t *)buffer_a,
filter_data,
output_ch,
conv_params,
quant_params,
bias_data,
out);
im2col_buf = (q7_t *)buffer_a;
}
else if (buffer_fill_cnt == 4 && (padded != 0))
{
buffer_fill_cnt = 0;
out = arm_nn_mat_mult_s8(filter_data,
(q7_t *)buffer_a,
output_ch,
4,
output_shift,
output_mult,
out_offset,
input_offset,
0,
out_activation_min,
out_activation_max,
num_elem,
bias_data,
out);
im2col_buf = (q7_t *)buffer_a;
padded = 0;
}
}
}
/* Handle left over columns */
if (buffer_fill_cnt != 0)
{
out = arm_nn_mat_mult_s8(filter_data,
(q7_t *)buffer_a,
output_ch,
buffer_fill_cnt,
output_shift,
output_mult,
out_offset,
input_offset,
0,
out_activation_min,
out_activation_max,
num_elem,
bias_data,
out);
}
#else // #if defined(ARM_MATH_MVEI)
const uint16_t dilation_x = conv_params->dilation.w;
const uint16_t dilation_y = conv_params->dilation.h;
int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
/* Generate two columns from the input tensor a GEMM computation */
q15_t *two_column_buf = buffer_a;
q7_t *out = output_data;
/* This part implements the im2col function */
for (i_out_y = 0; i_out_y < output_y; i_out_y++)
{
for (i_out_x = 0; i_out_x < output_x; i_out_x++)
{
const int32_t base_idx_y = stride_y * i_out_y - pad_y;
const int32_t base_idx_x = stride_x * i_out_x - pad_x;
for (i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
{
for (i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
{
const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
{
/* Filling 0 for out-of-bound paddings */
memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
}
else
{
/* Copying the pixel data to column */
arm_q7_to_q15_with_offset(
input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
}
two_column_buf += input_ch;
}
}
/* Computation is filed for every 2 columns */
if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
{
out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
buffer_a,
output_ch,
output_shift,
output_mult,
out_offset,
out_activation_min,
out_activation_max,
input_ch * kernel_y * kernel_x,
bias_data,
out);
/* counter reset */
two_column_buf = buffer_a;
}
}
}
/* left-over because odd number of output pixels */
if (two_column_buf != buffer_a)
{
const q7_t *ker_a = filter_data;
int i;
for (i = 0; i < output_ch; i++)
{
/* Load the accumulator with bias first */
q31_t sum = 0;
if (bias_data)
{
sum = bias_data[i];
}
/* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
const q15_t *ip_as_col = buffer_a;
/* 4 multiply and accumulates are done in one loop. */
#if defined(ARM_MATH_DSP)
uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
while (col_count)
{
q31_t ker_a1, ker_a2;
q31_t ip_b1, ip_b2;
ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
sum = __SMLAD(ker_a1, ip_b1, sum);
ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
sum = __SMLAD(ker_a2, ip_b2, sum);
col_count--;
}
/* Handle left over mac */
col_count = input_ch * kernel_y * kernel_x & 0x3;
#else
uint16_t col_count = input_ch * kernel_y * kernel_x;
#endif
while (col_count)
{
q7_t ker_a1 = *ker_a++;
q15_t ip_b1 = *ip_as_col++;
sum += ker_a1 * ip_b1;
col_count--;
}
sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
sum += out_offset;
sum = MAX(sum, out_activation_min);
sum = MIN(sum, out_activation_max);
*out++ = (q7_t)sum;
}
}
#endif // #if defined(ARM_MATH_MVEI)
/* Advance to the next batch */
input_data += (input_x * input_y * input_ch);
output_data += (output_x * output_y * output_ch);
}
/* Return to application */
return ARM_MATH_SUCCESS;
}
int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
#if defined(ARM_MATH_MVEI)
int32_t col_length = input_dims->c * filter_dims->w * filter_dims->h;
// Get number of complete int16 lanes(multiple of 8) for given col_length. This is dependent on
// implementation of arm_nn_mat_mult_s8
col_length = (col_length + 7) / 8;
// 4 -> number of im2col buffers, 8 -> 8 elements per Q register
return 4 * col_length * 8 * (int32_t)sizeof(int8_t);
#else
return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
#endif
}
/**
* @} end of NNConv group
*/