stm32f407-openocd/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c

894 lines
24 KiB
C
Raw Normal View History

2024-06-12 08:32:58 +00:00
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_q15.c
* Description: Combined Radix Decimation in Q15 Frequency CFFT processing function
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions.h"
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_vec_fft.h"
static void _arm_radix4_butterfly_q15_mve(
const arm_cfft_instance_q15 * S,
q15_t *pSrc,
uint32_t fftLen)
{
q15x8_t vecTmp0, vecTmp1;
q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
q15x8_t vecA, vecB, vecC, vecD;
uint32_t blkCnt;
uint32_t n1, n2;
uint32_t stage = 0;
int32_t iter = 1;
static const int32_t strides[4] = {
(0 - 16) * (int32_t)sizeof(q15_t *), (4 - 16) * (int32_t)sizeof(q15_t *),
(8 - 16) * (int32_t)sizeof(q15_t *), (12 - 16) * (int32_t)sizeof(q15_t *)
};
/*
* Process first stages
* Each stage in middle stages provides two down scaling of the input
*/
n2 = fftLen;
n1 = n2;
n2 >>= 2u;
for (int k = fftLen / 4u; k > 1; k >>= 2u)
{
q15_t const *p_rearranged_twiddle_tab_stride2 =
&S->rearranged_twiddle_stride2[
S->rearranged_twiddle_tab_stride2_arr[stage]];
q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
S->rearranged_twiddle_tab_stride3_arr[stage]];
q15_t const *p_rearranged_twiddle_tab_stride1 =
&S->rearranged_twiddle_stride1[
S->rearranged_twiddle_tab_stride1_arr[stage]];
q15_t * pBase = pSrc;
for (int i = 0; i < iter; i++)
{
q15_t *inA = pBase;
q15_t *inB = inA + n2 * CMPLX_DIM;
q15_t *inC = inB + n2 * CMPLX_DIM;
q15_t *inD = inC + n2 * CMPLX_DIM;
q15_t const *pW1 = p_rearranged_twiddle_tab_stride1;
q15_t const *pW2 = p_rearranged_twiddle_tab_stride2;
q15_t const *pW3 = p_rearranged_twiddle_tab_stride3;
q15x8_t vecW;
blkCnt = n2 / 4;
/*
* load 4 x q15 complex pair
*/
vecA = vldrhq_s16(inA);
vecC = vldrhq_s16(inC);
while (blkCnt > 0U)
{
vecB = vldrhq_s16(inB);
vecD = vldrhq_s16(inD);
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
*/
vecTmp0 = vhaddq(vecSum0, vecSum1);
vst1q(inA, vecTmp0);
inA += 8;
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'
*/
vecTmp0 = vhsubq(vecSum0, vecSum1);
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
*/
vecW = vld1q(pW2);
pW2 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
vst1q(inB, vecTmp1);
inB += 8;
/*
* [ 1 -i -1 +i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 -i -1 +i ] * [ A B C D ]'.* W1
*/
vecW = vld1q(pW1);
pW1 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
vst1q(inC, vecTmp1);
inC += 8;
/*
* [ 1 +i -1 -i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
*/
vecW = vld1q(pW3);
pW3 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
vst1q(inD, vecTmp1);
inD += 8;
vecA = vldrhq_s16(inA);
vecC = vldrhq_s16(inC);
blkCnt--;
}
pBase += CMPLX_DIM * n1;
}
n1 = n2;
n2 >>= 2u;
iter = iter << 2;
stage++;
}
/*
* start of Last stage process
*/
uint32x4_t vecScGathAddr = vld1q_u32 ((uint32_t*)strides);
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
/*
* load scheduling
*/
vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
blkCnt = (fftLen >> 4);
while (blkCnt > 0U)
{
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4);
vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* pre-load for next iteration
*/
vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
vecTmp0 = vhaddq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64, (int32x4_t) vecTmp0);
vecTmp0 = vhsubq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (int32x4_t) vecTmp0);
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (int32x4_t) vecTmp0);
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (int32x4_t) vecTmp0);
blkCnt--;
}
}
static void arm_cfft_radix4by2_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen)
{
uint32_t n2;
q15_t *pIn0;
q15_t *pIn1;
const q15_t *pCoef = S->pTwiddle;
uint32_t blkCnt;
q15x8_t vecIn0, vecIn1, vecSum, vecDiff;
q15x8_t vecCmplxTmp, vecTw;
q15_t const *pCoefVec;
n2 = fftLen >> 1;
pIn0 = pSrc;
pIn1 = pSrc + fftLen;
pCoefVec = pCoef;
blkCnt = n2 / 4;
while (blkCnt > 0U)
{
vecIn0 = *(q15x8_t *) pIn0;
vecIn1 = *(q15x8_t *) pIn1;
vecIn0 = vecIn0 >> 1;
vecIn1 = vecIn1 >> 1;
vecSum = vhaddq(vecIn0, vecIn1);
vst1q(pIn0, vecSum);
pIn0 += 8;
vecTw = vld1q(pCoefVec);
pCoefVec += 8;
vecDiff = vhsubq(vecIn0, vecIn1);
vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q15x8_t);
vst1q(pIn1, vecCmplxTmp);
pIn1 += 8;
blkCnt--;
}
_arm_radix4_butterfly_q15_mve(S, pSrc, n2);
_arm_radix4_butterfly_q15_mve(S, pSrc + fftLen, n2);
pIn0 = pSrc;
blkCnt = (fftLen << 1) >> 3;
while (blkCnt > 0U)
{
vecIn0 = *(q15x8_t *) pIn0;
vecIn0 = vecIn0 << 1;
vst1q(pIn0, vecIn0);
pIn0 += 8;
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (fftLen << 1) & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn0 = *(q15x8_t *) pIn0;
vecIn0 = vecIn0 << 1;
vstrhq_p(pIn0, vecIn0, p0);
}
}
static void _arm_radix4_butterfly_inverse_q15_mve(const arm_cfft_instance_q15 *S,q15_t *pSrc, uint32_t fftLen)
{
q15x8_t vecTmp0, vecTmp1;
q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
q15x8_t vecA, vecB, vecC, vecD;
uint32_t blkCnt;
uint32_t n1, n2;
uint32_t stage = 0;
int32_t iter = 1;
static const int32_t strides[4] = {
(0 - 16) * (int32_t)sizeof(q15_t *), (4 - 16) * (int32_t)sizeof(q15_t *),
(8 - 16) * (int32_t)sizeof(q15_t *), (12 - 16) * (int32_t)sizeof(q15_t *)
};
/*
* Process first stages
* Each stage in middle stages provides two down scaling of the input
*/
n2 = fftLen;
n1 = n2;
n2 >>= 2u;
for (int k = fftLen / 4u; k > 1; k >>= 2u)
{
q15_t const *p_rearranged_twiddle_tab_stride2 =
&S->rearranged_twiddle_stride2[
S->rearranged_twiddle_tab_stride2_arr[stage]];
q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
S->rearranged_twiddle_tab_stride3_arr[stage]];
q15_t const *p_rearranged_twiddle_tab_stride1 =
&S->rearranged_twiddle_stride1[
S->rearranged_twiddle_tab_stride1_arr[stage]];
q15_t * pBase = pSrc;
for (int i = 0; i < iter; i++)
{
q15_t *inA = pBase;
q15_t *inB = inA + n2 * CMPLX_DIM;
q15_t *inC = inB + n2 * CMPLX_DIM;
q15_t *inD = inC + n2 * CMPLX_DIM;
q15_t const *pW1 = p_rearranged_twiddle_tab_stride1;
q15_t const *pW2 = p_rearranged_twiddle_tab_stride2;
q15_t const *pW3 = p_rearranged_twiddle_tab_stride3;
q15x8_t vecW;
blkCnt = n2 / 4;
/*
* load 4 x q15 complex pair
*/
vecA = vldrhq_s16(inA);
vecC = vldrhq_s16(inC);
while (blkCnt > 0U)
{
vecB = vldrhq_s16(inB);
vecD = vldrhq_s16(inD);
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
*/
vecTmp0 = vhaddq(vecSum0, vecSum1);
vst1q(inA, vecTmp0);
inA += 8;
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'
*/
vecTmp0 = vhsubq(vecSum0, vecSum1);
/*
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
*/
vecW = vld1q(pW2);
pW2 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
vst1q(inB, vecTmp1);
inB += 8;
/*
* [ 1 -i -1 +i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 -i -1 +i ] * [ A B C D ]'.* W1
*/
vecW = vld1q(pW1);
pW1 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
vst1q(inC, vecTmp1);
inC += 8;
/*
* [ 1 +i -1 -i ] * [ A B C D ]'
*/
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
/*
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
*/
vecW = vld1q(pW3);
pW3 += 8;
vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
vst1q(inD, vecTmp1);
inD += 8;
vecA = vldrhq_s16(inA);
vecC = vldrhq_s16(inC);
blkCnt--;
}
pBase += CMPLX_DIM * n1;
}
n1 = n2;
n2 >>= 2u;
iter = iter << 2;
stage++;
}
/*
* start of Last stage process
*/
uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
/*
* load scheduling
*/
vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
blkCnt = (fftLen >> 4);
while (blkCnt > 0U)
{
vecSum0 = vhaddq(vecA, vecC);
vecDiff0 = vhsubq(vecA, vecC);
vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4);
vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12);
vecSum1 = vhaddq(vecB, vecD);
vecDiff1 = vhsubq(vecB, vecD);
/*
* pre-load for next iteration
*/
vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
vecTmp0 = vhaddq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64, (int32x4_t) vecTmp0);
vecTmp0 = vhsubq(vecSum0, vecSum1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (int32x4_t) vecTmp0);
vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (int32x4_t) vecTmp0);
vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (int32x4_t) vecTmp0);
blkCnt--;
}
}
static void arm_cfft_radix4by2_inverse_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen)
{
uint32_t n2;
q15_t *pIn0;
q15_t *pIn1;
const q15_t *pCoef = S->pTwiddle;
uint32_t blkCnt;
q15x8_t vecIn0, vecIn1, vecSum, vecDiff;
q15x8_t vecCmplxTmp, vecTw;
q15_t const *pCoefVec;
n2 = fftLen >> 1;
pIn0 = pSrc;
pIn1 = pSrc + fftLen;
pCoefVec = pCoef;
blkCnt = n2 / 4;
while (blkCnt > 0U)
{
vecIn0 = *(q15x8_t *) pIn0;
vecIn1 = *(q15x8_t *) pIn1;
vecIn0 = vecIn0 >> 1;
vecIn1 = vecIn1 >> 1;
vecSum = vhaddq(vecIn0, vecIn1);
vst1q(pIn0, vecSum);
pIn0 += 8;
vecTw = vld1q(pCoefVec);
pCoefVec += 8;
vecDiff = vhsubq(vecIn0, vecIn1);
vecCmplxTmp = vqrdmlsdhq(vuninitializedq_s16() , vecDiff, vecTw);
vecCmplxTmp = vqrdmladhxq(vecCmplxTmp, vecDiff, vecTw);
vst1q(pIn1, vecCmplxTmp);
pIn1 += 8;
blkCnt--;
}
_arm_radix4_butterfly_inverse_q15_mve(S, pSrc, n2);
_arm_radix4_butterfly_inverse_q15_mve(S, pSrc + fftLen, n2);
pIn0 = pSrc;
blkCnt = (fftLen << 1) >> 3;
while (blkCnt > 0U)
{
vecIn0 = *(q15x8_t *) pIn0;
vecIn0 = vecIn0 << 1;
vst1q(pIn0, vecIn0);
pIn0 += 8;
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (fftLen << 1) & 7;
while (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
vecIn0 = *(q15x8_t *) pIn0;
vecIn0 = vecIn0 << 1;
vstrhq_p(pIn0, vecIn0, p0);
}
}
/**
@ingroup groupTransforms
*/
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for Q15 complex FFT.
@param[in] S points to an instance of Q15 CFFT structure
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_q15(
const arm_cfft_instance_q15 * S,
q15_t * pSrc,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t fftLen = S->fftLen;
if (ifftFlag == 1U) {
switch (fftLen) {
case 16:
case 64:
case 256:
case 1024:
case 4096:
_arm_radix4_butterfly_inverse_q15_mve(S, pSrc, fftLen);
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_inverse_q15_mve(S, pSrc, fftLen);
break;
}
} else {
switch (fftLen) {
case 16:
case 64:
case 256:
case 1024:
case 4096:
_arm_radix4_butterfly_q15_mve(S, pSrc, fftLen);
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_q15_mve(S, pSrc, fftLen);
break;
}
}
if (bitReverseFlag)
{
arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable);
}
}
#else
extern void arm_radix4_butterfly_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_radix4_butterfly_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef,
uint32_t twidCoefModifier);
extern void arm_bitreversal_16(
uint16_t * pSrc,
const uint16_t bitRevLen,
const uint16_t * pBitRevTable);
void arm_cfft_radix4by2_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef);
void arm_cfft_radix4by2_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef);
/**
@ingroup groupTransforms
*/
/**
@addtogroup ComplexFFT
@{
*/
/**
@brief Processing function for Q15 complex FFT.
@param[in] S points to an instance of Q15 CFFT structure
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
@param[in] ifftFlag flag that selects transform direction
- value = 0: forward transform
- value = 1: inverse transform
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
- value = 0: disables bit reversal of output
- value = 1: enables bit reversal of output
@return none
*/
void arm_cfft_q15(
const arm_cfft_instance_q15 * S,
q15_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag)
{
uint32_t L = S->fftLen;
if (ifftFlag == 1U)
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle );
break;
}
}
else
{
switch (L)
{
case 16:
case 64:
case 256:
case 1024:
case 4096:
arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
break;
case 32:
case 128:
case 512:
case 2048:
arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle );
break;
}
}
if ( bitReverseFlag )
arm_bitreversal_16 ((uint16_t*) p1, S->bitRevLength, S->pBitRevTable);
}
/**
@} end of ComplexFFT group
*/
void arm_cfft_radix4by2_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef)
{
uint32_t i;
uint32_t n2;
q15_t p0, p1, p2, p3;
#if defined (ARM_MATH_DSP)
q31_t T, S, R;
q31_t coeff, out1, out2;
const q15_t *pC = pCoef;
q15_t *pSi = pSrc;
q15_t *pSl = pSrc + fftLen;
#else
uint32_t l;
q15_t xt, yt, cosVal, sinVal;
#endif
n2 = fftLen >> 1U;
#if defined (ARM_MATH_DSP)
for (i = n2; i > 0; i--)
{
coeff = read_q15x2_ia (&pC);
T = read_q15x2 (pSi);
T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
S = read_q15x2 (pSl);
S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
R = __QSUB16(T, S);
write_q15x2_ia (&pSi, __SHADD16(T, S));
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUAD(coeff, R) >> 16U;
out2 = __SMUSDX(coeff, R);
#else
out1 = __SMUSDX(R, coeff) >> 16U;
out2 = __SMUAD(coeff, R);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 ) );
}
#else /* #if defined (ARM_MATH_DSP) */
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) +
((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) -
((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
}
#endif /* #if defined (ARM_MATH_DSP) */
/* first col */
arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
p2 = pSrc[4 * i + 2];
p3 = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
p2 <<= 1U;
p3 <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = p2;
pSrc[4 * i + 3] = p3;
}
}
void arm_cfft_radix4by2_inverse_q15(
q15_t * pSrc,
uint32_t fftLen,
const q15_t * pCoef)
{
uint32_t i;
uint32_t n2;
q15_t p0, p1, p2, p3;
#if defined (ARM_MATH_DSP)
q31_t T, S, R;
q31_t coeff, out1, out2;
const q15_t *pC = pCoef;
q15_t *pSi = pSrc;
q15_t *pSl = pSrc + fftLen;
#else
uint32_t l;
q15_t xt, yt, cosVal, sinVal;
#endif
n2 = fftLen >> 1U;
#if defined (ARM_MATH_DSP)
for (i = n2; i > 0; i--)
{
coeff = read_q15x2_ia (&pC);
T = read_q15x2 (pSi);
T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
S = read_q15x2 (pSl);
S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
R = __QSUB16(T, S);
write_q15x2_ia (&pSi, __SHADD16(T, S));
#ifndef ARM_MATH_BIG_ENDIAN
out1 = __SMUSD(coeff, R) >> 16U;
out2 = __SMUADX(coeff, R);
#else
out1 = __SMUADX(R, coeff) >> 16U;
out2 = __SMUSD(__QSUB(0, coeff), R);
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 ));
}
#else /* #if defined (ARM_MATH_DSP) */
for (i = 0; i < n2; i++)
{
cosVal = pCoef[2 * i];
sinVal = pCoef[2 * i + 1];
l = i + n2;
xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) -
((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) +
((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
}
#endif /* #if defined (ARM_MATH_DSP) */
/* first col */
arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U);
/* second col */
arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
n2 = fftLen >> 1U;
for (i = 0; i < n2; i++)
{
p0 = pSrc[4 * i + 0];
p1 = pSrc[4 * i + 1];
p2 = pSrc[4 * i + 2];
p3 = pSrc[4 * i + 3];
p0 <<= 1U;
p1 <<= 1U;
p2 <<= 1U;
p3 <<= 1U;
pSrc[4 * i + 0] = p0;
pSrc[4 * i + 1] = p1;
pSrc[4 * i + 2] = p2;
pSrc[4 * i + 3] = p3;
}
}
#endif /* defined(ARM_MATH_MVEI) */