843 lines
27 KiB
C
843 lines
27 KiB
C
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS DSP Library
|
||
|
* Title: arm_cfft_f32.c
|
||
|
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
|
||
|
*
|
||
|
* $Date: 23 April 2021
|
||
|
* $Revision: V1.9.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M and Cortex-A cores
|
||
|
* -------------------------------------------------------------------- */
|
||
|
/*
|
||
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "dsp/transform_functions_f16.h"
|
||
|
#include "arm_common_tables_f16.h"
|
||
|
|
||
|
|
||
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||
|
|
||
|
#include "arm_helium_utils.h"
|
||
|
#include "arm_vec_fft.h"
|
||
|
#include "arm_mve_tables_f16.h"
|
||
|
|
||
|
|
||
|
static float16_t arm_inverse_fft_length_f16(uint16_t fftLen)
|
||
|
{
|
||
|
float16_t retValue=1.0;
|
||
|
|
||
|
switch (fftLen)
|
||
|
{
|
||
|
|
||
|
case 4096U:
|
||
|
retValue = (float16_t)0.000244140625f;
|
||
|
break;
|
||
|
|
||
|
case 2048U:
|
||
|
retValue = (float16_t)0.00048828125f;
|
||
|
break;
|
||
|
|
||
|
case 1024U:
|
||
|
retValue = (float16_t)0.0009765625f;
|
||
|
break;
|
||
|
|
||
|
case 512U:
|
||
|
retValue = (float16_t)0.001953125f;
|
||
|
break;
|
||
|
|
||
|
case 256U:
|
||
|
retValue = (float16_t)0.00390625f;
|
||
|
break;
|
||
|
|
||
|
case 128U:
|
||
|
retValue = (float16_t)0.0078125f;
|
||
|
break;
|
||
|
|
||
|
case 64U:
|
||
|
retValue = (float16_t)0.015625f;
|
||
|
break;
|
||
|
|
||
|
case 32U:
|
||
|
retValue = (float16_t)0.03125f;
|
||
|
break;
|
||
|
|
||
|
case 16U:
|
||
|
retValue = (float16_t)0.0625f;
|
||
|
break;
|
||
|
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return(retValue);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void _arm_radix4_butterfly_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen)
|
||
|
{
|
||
|
f16x8_t vecTmp0, vecTmp1;
|
||
|
f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
|
||
|
f16x8_t vecA, vecB, vecC, vecD;
|
||
|
uint32_t blkCnt;
|
||
|
uint32_t n1, n2;
|
||
|
uint32_t stage = 0;
|
||
|
int32_t iter = 1;
|
||
|
static const int32_t strides[4] =
|
||
|
{ ( 0 - 16) * (int32_t)sizeof(float16_t *)
|
||
|
, ( 4 - 16) * (int32_t)sizeof(float16_t *)
|
||
|
, ( 8 - 16) * (int32_t)sizeof(float16_t *)
|
||
|
, (12 - 16) * (int32_t)sizeof(float16_t *)};
|
||
|
|
||
|
n2 = fftLen;
|
||
|
n1 = n2;
|
||
|
n2 >>= 2u;
|
||
|
for (int k = fftLen / 4u; k > 1; k >>= 2)
|
||
|
{
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride1 =
|
||
|
&S->rearranged_twiddle_stride1[
|
||
|
S->rearranged_twiddle_tab_stride1_arr[stage]];
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride2 =
|
||
|
&S->rearranged_twiddle_stride2[
|
||
|
S->rearranged_twiddle_tab_stride2_arr[stage]];
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride3 =
|
||
|
&S->rearranged_twiddle_stride3[
|
||
|
S->rearranged_twiddle_tab_stride3_arr[stage]];
|
||
|
float16_t * pBase = pSrc;
|
||
|
for (int i = 0; i < iter; i++)
|
||
|
{
|
||
|
float16_t *inA = pBase;
|
||
|
float16_t *inB = inA + n2 * CMPLX_DIM;
|
||
|
float16_t *inC = inB + n2 * CMPLX_DIM;
|
||
|
float16_t *inD = inC + n2 * CMPLX_DIM;
|
||
|
float16_t const *pW1 = p_rearranged_twiddle_tab_stride1;
|
||
|
float16_t const *pW2 = p_rearranged_twiddle_tab_stride2;
|
||
|
float16_t const *pW3 = p_rearranged_twiddle_tab_stride3;
|
||
|
f16x8_t vecW;
|
||
|
|
||
|
blkCnt = n2 / 4;
|
||
|
/*
|
||
|
* load 2 f16 complex pair
|
||
|
*/
|
||
|
vecA = vldrhq_f16(inA);
|
||
|
vecC = vldrhq_f16(inC);
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecB = vldrhq_f16(inB);
|
||
|
vecD = vldrhq_f16(inD);
|
||
|
|
||
|
vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
|
||
|
vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
|
||
|
|
||
|
vecSum1 = vecB + vecD;
|
||
|
vecDiff1 = vecB - vecD;
|
||
|
/*
|
||
|
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
|
||
|
*/
|
||
|
vecTmp0 = vecSum0 + vecSum1;
|
||
|
vst1q(inA, vecTmp0);
|
||
|
inA += 8;
|
||
|
|
||
|
/*
|
||
|
* [ 1 -1 1 -1 ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = vecSum0 - vecSum1;
|
||
|
/*
|
||
|
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
|
||
|
*/
|
||
|
vecW = vld1q(pW2);
|
||
|
pW2 += 8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
|
||
|
vst1q(inB, vecTmp1);
|
||
|
inB += 8;
|
||
|
|
||
|
/*
|
||
|
* [ 1 -i -1 +i ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
|
||
|
/*
|
||
|
* [ 1 -i -1 +i ] * [ A B C D ]'.* W1
|
||
|
*/
|
||
|
vecW = vld1q(pW1);
|
||
|
pW1 +=8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
|
||
|
vst1q(inC, vecTmp1);
|
||
|
inC += 8;
|
||
|
|
||
|
/*
|
||
|
* [ 1 +i -1 -i ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
|
||
|
/*
|
||
|
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
|
||
|
*/
|
||
|
vecW = vld1q(pW3);
|
||
|
pW3 += 8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
|
||
|
vst1q(inD, vecTmp1);
|
||
|
inD += 8;
|
||
|
|
||
|
vecA = vldrhq_f16(inA);
|
||
|
vecC = vldrhq_f16(inC);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
pBase += CMPLX_DIM * n1;
|
||
|
}
|
||
|
n1 = n2;
|
||
|
n2 >>= 2u;
|
||
|
iter = iter << 2;
|
||
|
stage++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* start of Last stage process
|
||
|
*/
|
||
|
uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
|
||
|
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
|
||
|
|
||
|
/* load scheduling */
|
||
|
vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
|
||
|
vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
|
||
|
|
||
|
blkCnt = (fftLen >> 4);
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
|
||
|
vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
|
||
|
|
||
|
vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4);
|
||
|
vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12);
|
||
|
|
||
|
vecSum1 = vecB + vecD;
|
||
|
vecDiff1 = vecB - vecD;
|
||
|
|
||
|
/* pre-load for next iteration */
|
||
|
vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
|
||
|
vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
|
||
|
|
||
|
vecTmp0 = vecSum0 + vecSum1;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = vecSum0 - vecSum1;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* End of last stage process
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
static void arm_cfft_radix4by2_f16_mve(const arm_cfft_instance_f16 * S, float16_t *pSrc, uint32_t fftLen)
|
||
|
{
|
||
|
float16_t const *pCoefVec;
|
||
|
float16_t const *pCoef = S->pTwiddle;
|
||
|
float16_t *pIn0, *pIn1;
|
||
|
uint32_t n2;
|
||
|
uint32_t blkCnt;
|
||
|
f16x8_t vecIn0, vecIn1, vecSum, vecDiff;
|
||
|
f16x8_t vecCmplxTmp, vecTw;
|
||
|
|
||
|
|
||
|
n2 = fftLen >> 1;
|
||
|
pIn0 = pSrc;
|
||
|
pIn1 = pSrc + fftLen;
|
||
|
pCoefVec = pCoef;
|
||
|
|
||
|
blkCnt = n2 / 4;
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecIn0 = *(f16x8_t *) pIn0;
|
||
|
vecIn1 = *(f16x8_t *) pIn1;
|
||
|
vecTw = vld1q(pCoefVec);
|
||
|
pCoefVec += 8;
|
||
|
|
||
|
vecSum = vaddq(vecIn0, vecIn1);
|
||
|
vecDiff = vsubq(vecIn0, vecIn1);
|
||
|
|
||
|
vecCmplxTmp = MVE_CMPLX_MULT_FLT_Conj_AxB(vecTw, vecDiff);
|
||
|
|
||
|
vst1q(pIn0, vecSum);
|
||
|
pIn0 += 8;
|
||
|
vst1q(pIn1, vecCmplxTmp);
|
||
|
pIn1 += 8;
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
_arm_radix4_butterfly_f16_mve(S, pSrc, n2);
|
||
|
|
||
|
_arm_radix4_butterfly_f16_mve(S, pSrc + fftLen, n2);
|
||
|
|
||
|
pIn0 = pSrc;
|
||
|
}
|
||
|
|
||
|
static void _arm_radix4_butterfly_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen, float16_t onebyfftLen)
|
||
|
{
|
||
|
f16x8_t vecTmp0, vecTmp1;
|
||
|
f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
|
||
|
f16x8_t vecA, vecB, vecC, vecD;
|
||
|
uint32_t blkCnt;
|
||
|
uint32_t n1, n2;
|
||
|
uint32_t stage = 0;
|
||
|
int32_t iter = 1;
|
||
|
static const int32_t strides[4] = {
|
||
|
( 0 - 16) * (int32_t)sizeof(q31_t *),
|
||
|
( 4 - 16) * (int32_t)sizeof(q31_t *),
|
||
|
( 8 - 16) * (int32_t)sizeof(q31_t *),
|
||
|
(12 - 16) * (int32_t)sizeof(q31_t *)
|
||
|
};
|
||
|
|
||
|
n2 = fftLen;
|
||
|
n1 = n2;
|
||
|
n2 >>= 2u;
|
||
|
for (int k = fftLen / 4; k > 1; k >>= 2)
|
||
|
{
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride1 =
|
||
|
&S->rearranged_twiddle_stride1[
|
||
|
S->rearranged_twiddle_tab_stride1_arr[stage]];
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride2 =
|
||
|
&S->rearranged_twiddle_stride2[
|
||
|
S->rearranged_twiddle_tab_stride2_arr[stage]];
|
||
|
float16_t const *p_rearranged_twiddle_tab_stride3 =
|
||
|
&S->rearranged_twiddle_stride3[
|
||
|
S->rearranged_twiddle_tab_stride3_arr[stage]];
|
||
|
|
||
|
float16_t * pBase = pSrc;
|
||
|
for (int i = 0; i < iter; i++)
|
||
|
{
|
||
|
float16_t *inA = pBase;
|
||
|
float16_t *inB = inA + n2 * CMPLX_DIM;
|
||
|
float16_t *inC = inB + n2 * CMPLX_DIM;
|
||
|
float16_t *inD = inC + n2 * CMPLX_DIM;
|
||
|
float16_t const *pW1 = p_rearranged_twiddle_tab_stride1;
|
||
|
float16_t const *pW2 = p_rearranged_twiddle_tab_stride2;
|
||
|
float16_t const *pW3 = p_rearranged_twiddle_tab_stride3;
|
||
|
f16x8_t vecW;
|
||
|
|
||
|
blkCnt = n2 / 4;
|
||
|
/*
|
||
|
* load 2 f32 complex pair
|
||
|
*/
|
||
|
vecA = vldrhq_f16(inA);
|
||
|
vecC = vldrhq_f16(inC);
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecB = vldrhq_f16(inB);
|
||
|
vecD = vldrhq_f16(inD);
|
||
|
|
||
|
vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
|
||
|
vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
|
||
|
|
||
|
vecSum1 = vecB + vecD;
|
||
|
vecDiff1 = vecB - vecD;
|
||
|
/*
|
||
|
* [ 1 1 1 1 ] * [ A B C D ]' .* 1
|
||
|
*/
|
||
|
vecTmp0 = vecSum0 + vecSum1;
|
||
|
vst1q(inA, vecTmp0);
|
||
|
inA += 8;
|
||
|
/*
|
||
|
* [ 1 -1 1 -1 ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = vecSum0 - vecSum1;
|
||
|
/*
|
||
|
* [ 1 -1 1 -1 ] * [ A B C D ]'.* W1
|
||
|
*/
|
||
|
vecW = vld1q(pW2);
|
||
|
pW2 += 8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
|
||
|
vst1q(inB, vecTmp1);
|
||
|
inB += 8;
|
||
|
|
||
|
/*
|
||
|
* [ 1 -i -1 +i ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
|
||
|
/*
|
||
|
* [ 1 -i -1 +i ] * [ A B C D ]'.* W2
|
||
|
*/
|
||
|
vecW = vld1q(pW1);
|
||
|
pW1 += 8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
|
||
|
vst1q(inC, vecTmp1);
|
||
|
inC += 8;
|
||
|
|
||
|
/*
|
||
|
* [ 1 +i -1 -i ] * [ A B C D ]'
|
||
|
*/
|
||
|
vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
|
||
|
/*
|
||
|
* [ 1 +i -1 -i ] * [ A B C D ]'.* W3
|
||
|
*/
|
||
|
vecW = vld1q(pW3);
|
||
|
pW3 += 8;
|
||
|
vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
|
||
|
vst1q(inD, vecTmp1);
|
||
|
inD += 8;
|
||
|
|
||
|
vecA = vldrhq_f16(inA);
|
||
|
vecC = vldrhq_f16(inC);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
pBase += CMPLX_DIM * n1;
|
||
|
}
|
||
|
n1 = n2;
|
||
|
n2 >>= 2u;
|
||
|
iter = iter << 2;
|
||
|
stage++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* start of Last stage process
|
||
|
*/
|
||
|
uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
|
||
|
vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
|
||
|
|
||
|
/*
|
||
|
* load scheduling
|
||
|
*/
|
||
|
vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
|
||
|
vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
|
||
|
|
||
|
blkCnt = (fftLen >> 4);
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
|
||
|
vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
|
||
|
|
||
|
vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4);
|
||
|
vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12);
|
||
|
|
||
|
vecSum1 = vecB + vecD;
|
||
|
vecDiff1 = vecB - vecD;
|
||
|
|
||
|
vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
|
||
|
vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
|
||
|
|
||
|
vecTmp0 = vecSum0 + vecSum1;
|
||
|
vecTmp0 = vecTmp0 * onebyfftLen;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = vecSum0 - vecSum1;
|
||
|
vecTmp0 = vecTmp0 * onebyfftLen;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
|
||
|
vecTmp0 = vecTmp0 * onebyfftLen;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0);
|
||
|
|
||
|
vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
|
||
|
vecTmp0 = vecTmp0 * onebyfftLen;
|
||
|
vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* End of last stage process
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
static void arm_cfft_radix4by2_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t *pSrc, uint32_t fftLen)
|
||
|
{
|
||
|
float16_t const *pCoefVec;
|
||
|
float16_t const *pCoef = S->pTwiddle;
|
||
|
float16_t *pIn0, *pIn1;
|
||
|
uint32_t n2;
|
||
|
float16_t onebyfftLen = arm_inverse_fft_length_f16(fftLen);
|
||
|
uint32_t blkCnt;
|
||
|
f16x8_t vecIn0, vecIn1, vecSum, vecDiff;
|
||
|
f16x8_t vecCmplxTmp, vecTw;
|
||
|
|
||
|
|
||
|
n2 = fftLen >> 1;
|
||
|
pIn0 = pSrc;
|
||
|
pIn1 = pSrc + fftLen;
|
||
|
pCoefVec = pCoef;
|
||
|
|
||
|
blkCnt = n2 / 4;
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
vecIn0 = *(f16x8_t *) pIn0;
|
||
|
vecIn1 = *(f16x8_t *) pIn1;
|
||
|
vecTw = vld1q(pCoefVec);
|
||
|
pCoefVec += 8;
|
||
|
|
||
|
vecSum = vaddq(vecIn0, vecIn1);
|
||
|
vecDiff = vsubq(vecIn0, vecIn1);
|
||
|
|
||
|
vecCmplxTmp = MVE_CMPLX_MULT_FLT_AxB(vecTw, vecDiff);
|
||
|
|
||
|
vst1q(pIn0, vecSum);
|
||
|
pIn0 += 8;
|
||
|
vst1q(pIn1, vecCmplxTmp);
|
||
|
pIn1 += 8;
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
_arm_radix4_butterfly_inverse_f16_mve(S, pSrc, n2, onebyfftLen);
|
||
|
|
||
|
_arm_radix4_butterfly_inverse_f16_mve(S, pSrc + fftLen, n2, onebyfftLen);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
@addtogroup ComplexFFT
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@brief Processing function for the floating-point complex FFT.
|
||
|
@param[in] S points to an instance of the floating-point CFFT structure
|
||
|
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
|
||
|
@param[in] ifftFlag flag that selects transform direction
|
||
|
- value = 0: forward transform
|
||
|
- value = 1: inverse transform
|
||
|
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
|
||
|
- value = 0: disables bit reversal of output
|
||
|
- value = 1: enables bit reversal of output
|
||
|
@return none
|
||
|
*/
|
||
|
|
||
|
|
||
|
void arm_cfft_f16(
|
||
|
const arm_cfft_instance_f16 * S,
|
||
|
float16_t * pSrc,
|
||
|
uint8_t ifftFlag,
|
||
|
uint8_t bitReverseFlag)
|
||
|
{
|
||
|
uint32_t fftLen = S->fftLen;
|
||
|
|
||
|
if (ifftFlag == 1U) {
|
||
|
|
||
|
switch (fftLen) {
|
||
|
case 16:
|
||
|
case 64:
|
||
|
case 256:
|
||
|
case 1024:
|
||
|
case 4096:
|
||
|
_arm_radix4_butterfly_inverse_f16_mve(S, pSrc, fftLen, arm_inverse_fft_length_f16(S->fftLen));
|
||
|
break;
|
||
|
|
||
|
case 32:
|
||
|
case 128:
|
||
|
case 512:
|
||
|
case 2048:
|
||
|
arm_cfft_radix4by2_inverse_f16_mve(S, pSrc, fftLen);
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
switch (fftLen) {
|
||
|
case 16:
|
||
|
case 64:
|
||
|
case 256:
|
||
|
case 1024:
|
||
|
case 4096:
|
||
|
_arm_radix4_butterfly_f16_mve(S, pSrc, fftLen);
|
||
|
break;
|
||
|
|
||
|
case 32:
|
||
|
case 128:
|
||
|
case 512:
|
||
|
case 2048:
|
||
|
arm_cfft_radix4by2_f16_mve(S, pSrc, fftLen);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
if (bitReverseFlag)
|
||
|
{
|
||
|
|
||
|
arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
#if defined(ARM_FLOAT16_SUPPORTED)
|
||
|
|
||
|
extern void arm_bitreversal_16(
|
||
|
uint16_t * pSrc,
|
||
|
const uint16_t bitRevLen,
|
||
|
const uint16_t * pBitRevTable);
|
||
|
|
||
|
|
||
|
extern void arm_cfft_radix4by2_f16(
|
||
|
float16_t * pSrc,
|
||
|
uint32_t fftLen,
|
||
|
const float16_t * pCoef);
|
||
|
|
||
|
extern void arm_radix4_butterfly_f16(
|
||
|
float16_t * pSrc,
|
||
|
uint16_t fftLen,
|
||
|
const float16_t * pCoef,
|
||
|
uint16_t twidCoefModifier);
|
||
|
|
||
|
/**
|
||
|
@ingroup groupTransforms
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@defgroup ComplexFFT Complex FFT Functions
|
||
|
|
||
|
@par
|
||
|
The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
|
||
|
Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
|
||
|
than the DFT, especially for long lengths.
|
||
|
The algorithms described in this section
|
||
|
operate on complex data. A separate set of functions is devoted to handling
|
||
|
of real sequences.
|
||
|
@par
|
||
|
There are separate algorithms for handling floating-point, Q15, and Q31 data
|
||
|
types. The algorithms available for each data type are described next.
|
||
|
@par
|
||
|
The FFT functions operate in-place. That is, the array holding the input data
|
||
|
will also be used to hold the corresponding result. The input data is complex
|
||
|
and contains <code>2*fftLen</code> interleaved values as shown below.
|
||
|
<pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
|
||
|
The FFT result will be contained in the same array and the frequency domain
|
||
|
values will have the same interleaving.
|
||
|
|
||
|
@par Floating-point
|
||
|
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
|
||
|
stages are performed along with a single radix-2 or radix-4 stage, as needed.
|
||
|
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
||
|
a different twiddle factor table.
|
||
|
@par
|
||
|
The function uses the standard FFT definition and output values may grow by a
|
||
|
factor of <code>fftLen</code> when computing the forward transform. The
|
||
|
inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
||
|
calculation and this matches the textbook definition of the inverse FFT.
|
||
|
@par
|
||
|
For the MVE version, the new arm_cfft_init_f32 initialization function is
|
||
|
<b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the
|
||
|
needed FFTs.</b> Other FFT versions can continue to be initialized as
|
||
|
explained below.
|
||
|
@par
|
||
|
For not MVE versions, pre-initialized data structures containing twiddle factors
|
||
|
and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
||
|
this header in your function and then pass one of the constant structures as
|
||
|
an argument to arm_cfft_f32. For example:
|
||
|
@par
|
||
|
<code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
|
||
|
@par
|
||
|
computes a 64-point inverse complex FFT including bit reversal.
|
||
|
The data structures are treated as constant data and not modified during the
|
||
|
calculation. The same data structure can be reused for multiple transforms
|
||
|
including mixing forward and inverse transforms.
|
||
|
@par
|
||
|
Earlier releases of the library provided separate radix-2 and radix-4
|
||
|
algorithms that operated on floating-point data. These functions are still
|
||
|
provided but are deprecated. The older functions are slower and less general
|
||
|
than the new functions.
|
||
|
@par
|
||
|
An example of initialization of the constants for the arm_cfft_f32 function follows:
|
||
|
@code
|
||
|
const static arm_cfft_instance_f32 *S;
|
||
|
...
|
||
|
switch (length) {
|
||
|
case 16:
|
||
|
S = &arm_cfft_sR_f32_len16;
|
||
|
break;
|
||
|
case 32:
|
||
|
S = &arm_cfft_sR_f32_len32;
|
||
|
break;
|
||
|
case 64:
|
||
|
S = &arm_cfft_sR_f32_len64;
|
||
|
break;
|
||
|
case 128:
|
||
|
S = &arm_cfft_sR_f32_len128;
|
||
|
break;
|
||
|
case 256:
|
||
|
S = &arm_cfft_sR_f32_len256;
|
||
|
break;
|
||
|
case 512:
|
||
|
S = &arm_cfft_sR_f32_len512;
|
||
|
break;
|
||
|
case 1024:
|
||
|
S = &arm_cfft_sR_f32_len1024;
|
||
|
break;
|
||
|
case 2048:
|
||
|
S = &arm_cfft_sR_f32_len2048;
|
||
|
break;
|
||
|
case 4096:
|
||
|
S = &arm_cfft_sR_f32_len4096;
|
||
|
break;
|
||
|
}
|
||
|
@endcode
|
||
|
@par
|
||
|
The new arm_cfft_init_f32 can also be used.
|
||
|
@par Q15 and Q31
|
||
|
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
|
||
|
stages are performed along with a single radix-2 stage, as needed.
|
||
|
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
||
|
a different twiddle factor table.
|
||
|
@par
|
||
|
The function uses the standard FFT definition and output values may grow by a
|
||
|
factor of <code>fftLen</code> when computing the forward transform. The
|
||
|
inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
||
|
calculation and this matches the textbook definition of the inverse FFT.
|
||
|
@par
|
||
|
Pre-initialized data structures containing twiddle factors and bit reversal
|
||
|
tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
||
|
this header in your function and then pass one of the constant structures as
|
||
|
an argument to arm_cfft_q31. For example:
|
||
|
@par
|
||
|
<code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
|
||
|
@par
|
||
|
computes a 64-point inverse complex FFT including bit reversal.
|
||
|
The data structures are treated as constant data and not modified during the
|
||
|
calculation. The same data structure can be reused for multiple transforms
|
||
|
including mixing forward and inverse transforms.
|
||
|
@par
|
||
|
Earlier releases of the library provided separate radix-2 and radix-4
|
||
|
algorithms that operated on floating-point data. These functions are still
|
||
|
provided but are deprecated. The older functions are slower and less general
|
||
|
than the new functions.
|
||
|
@par
|
||
|
An example of initialization of the constants for the arm_cfft_q31 function follows:
|
||
|
@code
|
||
|
const static arm_cfft_instance_q31 *S;
|
||
|
...
|
||
|
switch (length) {
|
||
|
case 16:
|
||
|
S = &arm_cfft_sR_q31_len16;
|
||
|
break;
|
||
|
case 32:
|
||
|
S = &arm_cfft_sR_q31_len32;
|
||
|
break;
|
||
|
case 64:
|
||
|
S = &arm_cfft_sR_q31_len64;
|
||
|
break;
|
||
|
case 128:
|
||
|
S = &arm_cfft_sR_q31_len128;
|
||
|
break;
|
||
|
case 256:
|
||
|
S = &arm_cfft_sR_q31_len256;
|
||
|
break;
|
||
|
case 512:
|
||
|
S = &arm_cfft_sR_q31_len512;
|
||
|
break;
|
||
|
case 1024:
|
||
|
S = &arm_cfft_sR_q31_len1024;
|
||
|
break;
|
||
|
case 2048:
|
||
|
S = &arm_cfft_sR_q31_len2048;
|
||
|
break;
|
||
|
case 4096:
|
||
|
S = &arm_cfft_sR_q31_len4096;
|
||
|
break;
|
||
|
}
|
||
|
@endcode
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
/**
|
||
|
@addtogroup ComplexFFT
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@brief Processing function for the floating-point complex FFT.
|
||
|
@param[in] S points to an instance of the floating-point CFFT structure
|
||
|
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
|
||
|
@param[in] ifftFlag flag that selects transform direction
|
||
|
- value = 0: forward transform
|
||
|
- value = 1: inverse transform
|
||
|
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
|
||
|
- value = 0: disables bit reversal of output
|
||
|
- value = 1: enables bit reversal of output
|
||
|
@return none
|
||
|
*/
|
||
|
|
||
|
void arm_cfft_f16(
|
||
|
const arm_cfft_instance_f16 * S,
|
||
|
float16_t * p1,
|
||
|
uint8_t ifftFlag,
|
||
|
uint8_t bitReverseFlag)
|
||
|
{
|
||
|
uint32_t L = S->fftLen, l;
|
||
|
float16_t invL, * pSrc;
|
||
|
|
||
|
if (ifftFlag == 1U)
|
||
|
{
|
||
|
/* Conjugate input data */
|
||
|
pSrc = p1 + 1;
|
||
|
for(l=0; l<L; l++)
|
||
|
{
|
||
|
*pSrc = -(_Float16)*pSrc;
|
||
|
pSrc += 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
switch (L)
|
||
|
{
|
||
|
|
||
|
case 16:
|
||
|
case 64:
|
||
|
case 256:
|
||
|
case 1024:
|
||
|
case 4096:
|
||
|
arm_radix4_butterfly_f16 (p1, L, (float16_t*)S->pTwiddle, 1U);
|
||
|
break;
|
||
|
|
||
|
case 32:
|
||
|
case 128:
|
||
|
case 512:
|
||
|
case 2048:
|
||
|
arm_cfft_radix4by2_f16 ( p1, L, (float16_t*)S->pTwiddle);
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
|
||
|
if ( bitReverseFlag )
|
||
|
arm_bitreversal_16((uint16_t*)p1, S->bitRevLength,(uint16_t*)S->pBitRevTable);
|
||
|
|
||
|
if (ifftFlag == 1U)
|
||
|
{
|
||
|
invL = 1.0f16/(_Float16)L;
|
||
|
/* Conjugate and scale output data */
|
||
|
pSrc = p1;
|
||
|
for(l=0; l<L; l++)
|
||
|
{
|
||
|
*pSrc++ *= (_Float16)invL ;
|
||
|
*pSrc = -(_Float16)(*pSrc) * (_Float16)invL;
|
||
|
pSrc++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif /* if defined(ARM_FLOAT16_SUPPORTED) */
|
||
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
||
|
|
||
|
/**
|
||
|
@} end of ComplexFFT group
|
||
|
*/
|