844 lines
26 KiB
C
844 lines
26 KiB
C
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS DSP Library
|
||
|
* Title: arm_mat_mult_q15.c
|
||
|
* Description: Q15 matrix multiplication
|
||
|
*
|
||
|
* $Date: 3 Nov 2021
|
||
|
* $Revision: V1.10.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M and Cortex-A cores
|
||
|
* -------------------------------------------------------------------- */
|
||
|
/*
|
||
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "dsp/matrix_functions.h"
|
||
|
|
||
|
/**
|
||
|
@ingroup groupMatrix
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@addtogroup MatrixMult
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@brief Q15 matrix multiplication.
|
||
|
@param[in] pSrcA points to the first input matrix structure
|
||
|
@param[in] pSrcB points to the second input matrix structure
|
||
|
@param[out] pDst points to output matrix structure
|
||
|
@param[in] pState points to the array for storing intermediate results
|
||
|
@return execution status
|
||
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
||
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
||
|
|
||
|
@par Scaling and Overflow Behavior
|
||
|
The function is implemented using an internal 64-bit accumulator. The inputs to the
|
||
|
multiplications are in 1.15 format and multiplications yield a 2.30 result.
|
||
|
The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
||
|
This approach provides 33 guard bits and there is no risk of overflow.
|
||
|
The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
|
||
|
and then saturated to 1.15 format.
|
||
|
@par
|
||
|
Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
|
||
|
*/
|
||
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||
|
|
||
|
#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
|
||
|
|
||
|
#define MATRIX_DIM2 2
|
||
|
#define MATRIX_DIM3 3
|
||
|
#define MATRIX_DIM4 4
|
||
|
|
||
|
__STATIC_INLINE arm_status arm_mat_mult_q15_2x2_mve(
|
||
|
const arm_matrix_instance_q15 * pSrcA,
|
||
|
const arm_matrix_instance_q15 * pSrcB,
|
||
|
arm_matrix_instance_q15 * pDst)
|
||
|
{
|
||
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
||
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
||
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
||
|
uint16x8_t vecColBOffs;
|
||
|
q15_t *pInA0 = pInA;
|
||
|
q15_t *pInA1 = pInA0 + MATRIX_DIM2;
|
||
|
q63_t acc0, acc1;
|
||
|
q15x8_t vecB, vecA0, vecA1;
|
||
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM2);
|
||
|
|
||
|
vecColBOffs = vidupq_u16((uint32_t)0, 2); /* MATRIX_DIM2 */
|
||
|
|
||
|
pInB = pSrcB->pData;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
||
|
|
||
|
vecA0 = vldrhq_s16(pInA0);
|
||
|
vecA1 = vldrhq_s16(pInA1);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
|
||
|
|
||
|
/*
|
||
|
* Return to application
|
||
|
*/
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
__STATIC_INLINE arm_status arm_mat_mult_q15_3x3_mve(
|
||
|
const arm_matrix_instance_q15 * pSrcA,
|
||
|
const arm_matrix_instance_q15 * pSrcB,
|
||
|
arm_matrix_instance_q15 * pDst)
|
||
|
{
|
||
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
||
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
||
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
||
|
uint16x8_t vecColBOffs;
|
||
|
q15_t *pInA0 = pInA;
|
||
|
q15_t *pInA1 = pInA0 + MATRIX_DIM3;
|
||
|
q15_t *pInA2 = pInA1 + MATRIX_DIM3;
|
||
|
q63_t acc0, acc1, acc2;
|
||
|
q15x8_t vecB, vecA0, vecA1, vecA2;
|
||
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM3);
|
||
|
|
||
|
vecColBOffs = vidupq_u16((uint32_t)0, 1);
|
||
|
vecColBOffs = vecColBOffs * MATRIX_DIM3;
|
||
|
|
||
|
pInB = pSrcB->pData;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
||
|
|
||
|
vecA0 = vldrhq_s16(pInA0);
|
||
|
vecA1 = vldrhq_s16(pInA1);
|
||
|
vecA2 = vldrhq_s16(pInA2);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
||
|
/*
|
||
|
* Return to application
|
||
|
*/
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
}
|
||
|
|
||
|
|
||
|
__STATIC_INLINE arm_status arm_mat_mult_q15_4x4_mve(
|
||
|
const arm_matrix_instance_q15 * pSrcA,
|
||
|
const arm_matrix_instance_q15 * pSrcB,
|
||
|
arm_matrix_instance_q15 * pDst)
|
||
|
{
|
||
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
||
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
||
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
||
|
uint16x8_t vecColBOffs;
|
||
|
q15_t *pInA0 = pInA;
|
||
|
q15_t *pInA1 = pInA0 + MATRIX_DIM4;
|
||
|
q15_t *pInA2 = pInA1 + MATRIX_DIM4;
|
||
|
q15_t *pInA3 = pInA2 + MATRIX_DIM4;
|
||
|
q63_t acc0, acc1, acc2, acc3;
|
||
|
q15x8_t vecB, vecA0, vecA1, vecA2, vecA3;
|
||
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM4);
|
||
|
|
||
|
vecColBOffs = vidupq_u16((uint32_t)0, 4);
|
||
|
|
||
|
pInB = pSrcB->pData;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
||
|
|
||
|
vecA0 = vldrhq_s16(pInA0);
|
||
|
vecA1 = vldrhq_s16(pInA1);
|
||
|
vecA2 = vldrhq_s16(pInA2);
|
||
|
vecA3 = vldrhq_s16(pInA3);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
acc3 = vmlaldavq(vecA3, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
acc3 = asrl(acc3, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
acc3 = vmlaldavq(vecA3, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
acc3 = asrl(acc3, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
||
|
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
acc3 = vmlaldavq(vecA3, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
acc3 = asrl(acc3, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
||
|
|
||
|
pOut++;
|
||
|
|
||
|
/* move to next B column */
|
||
|
pInB = pInB + 1;
|
||
|
|
||
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
||
|
|
||
|
acc0 = vmlaldavq(vecA0, vecB);
|
||
|
acc1 = vmlaldavq(vecA1, vecB);
|
||
|
acc2 = vmlaldavq(vecA2, vecB);
|
||
|
acc3 = vmlaldavq(vecA3, vecB);
|
||
|
|
||
|
acc0 = asrl(acc0, 15);
|
||
|
acc1 = asrl(acc1, 15);
|
||
|
acc2 = asrl(acc2, 15);
|
||
|
acc3 = asrl(acc3, 15);
|
||
|
|
||
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
||
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
||
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
||
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
||
|
/*
|
||
|
* Return to application
|
||
|
*/
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
}
|
||
|
|
||
|
|
||
|
arm_status arm_mat_mult_q15(
|
||
|
const arm_matrix_instance_q15 * pSrcA,
|
||
|
const arm_matrix_instance_q15 * pSrcB,
|
||
|
arm_matrix_instance_q15 * pDst,
|
||
|
q15_t * pState)
|
||
|
{
|
||
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
||
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
||
|
q15_t *pInA2;
|
||
|
q15_t *pInB2;
|
||
|
q15_t *px; /* Temporary output data matrix pointer */
|
||
|
q15_t *px2; /* Temporary output data matrix pointer */
|
||
|
uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
||
|
uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
||
|
uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
||
|
uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
||
|
uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
|
||
|
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
|
||
|
uint32_t blkCnt; /* loop counters */
|
||
|
arm_status status; /* Status of matrix multiplication */
|
||
|
arm_matrix_instance_q15 BT;
|
||
|
|
||
|
#ifdef ARM_MATH_MATRIX_CHECK
|
||
|
|
||
|
/* Check for matrix mismatch condition */
|
||
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
||
|
(pSrcA->numRows != pDst->numRows) ||
|
||
|
(pSrcB->numCols != pDst->numCols) )
|
||
|
{
|
||
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
||
|
status = ARM_MATH_SIZE_MISMATCH;
|
||
|
}
|
||
|
else
|
||
|
#endif
|
||
|
{
|
||
|
/* small squared matrix specialized routines */
|
||
|
if (numRowsA == numColsB && numColsB == numColsA) {
|
||
|
|
||
|
if (numRowsA == 1) {
|
||
|
q63_t sum;
|
||
|
sum = pInA[0] * pInB[0];
|
||
|
pDst->pData[0] = (q15_t) __SSAT((sum >> 15), 16);
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
} else if (numRowsA == 2)
|
||
|
return arm_mat_mult_q15_2x2_mve(pSrcA, pSrcB, pDst);
|
||
|
else if (numRowsA == 3)
|
||
|
return arm_mat_mult_q15_3x3_mve(pSrcA, pSrcB, pDst);
|
||
|
else if (numRowsA == 4)
|
||
|
return arm_mat_mult_q15_4x4_mve(pSrcA, pSrcB, pDst);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Matrix transpose
|
||
|
*/
|
||
|
|
||
|
BT.numRows = numColsB;
|
||
|
BT.numCols = numRowsB;
|
||
|
BT.pData = pSrcBT;
|
||
|
|
||
|
arm_mat_trans_q15(pSrcB, &BT);
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Reset the variables for the usage in the following multiplication process
|
||
|
*/
|
||
|
i = 0;
|
||
|
row = numRowsA >> 1;
|
||
|
px = pDst->pData;
|
||
|
px2 = px + numColsB;
|
||
|
|
||
|
/*
|
||
|
* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* row loop
|
||
|
*/
|
||
|
while (row > 0u) {
|
||
|
/*
|
||
|
* For every row wise process, the column loop counter is to be initiated
|
||
|
*/
|
||
|
col = numColsB >> 1;
|
||
|
/*
|
||
|
* For every row wise process, the pIn2 pointer is set
|
||
|
* to the starting address of the transposed pSrcB data
|
||
|
*/
|
||
|
pInB = pSrcBT;
|
||
|
pInB2 = pInB + numRowsB;
|
||
|
j = 0;
|
||
|
|
||
|
/*
|
||
|
* column loop
|
||
|
*/
|
||
|
while (col > 0u) {
|
||
|
q15_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
|
||
|
q15x8_t vecA, vecA2, vecB, vecB2;
|
||
|
q63_t acc0, acc1, acc2, acc3;
|
||
|
|
||
|
/*
|
||
|
* Initiate the pointer pIn1 to point to the starting address of the column being processed
|
||
|
*/
|
||
|
pInA = pSrcA->pData + i;
|
||
|
pInA2 = pInA + numColsA;
|
||
|
pInB = pSrcBT + j;
|
||
|
pInB2 = pInB + numRowsB;
|
||
|
|
||
|
|
||
|
pSrcAVec = (q15_t const *) pInA;
|
||
|
pSrcA2Vec = (q15_t const *) pInA2;
|
||
|
pSrcBVec = (q15_t const *) pInB;
|
||
|
pSrcB2Vec = (q15_t const *) pInB2;
|
||
|
|
||
|
acc0 = 0LL;
|
||
|
acc1 = 0LL;
|
||
|
acc2 = 0LL;
|
||
|
acc3 = 0LL;
|
||
|
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
pSrcAVec += 8;
|
||
|
|
||
|
blkCnt = numColsA / 8;
|
||
|
while (blkCnt > 0U) {
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
pSrcBVec += 8;
|
||
|
acc0 = vmlaldavaq(acc0, vecA, vecB);
|
||
|
vecA2 = vld1q(pSrcA2Vec);
|
||
|
pSrcA2Vec += 8;
|
||
|
acc1 = vmlaldavaq(acc1, vecA2, vecB);
|
||
|
vecB2 = vld1q(pSrcB2Vec);
|
||
|
pSrcB2Vec += 8;
|
||
|
acc2 = vmlaldavaq(acc2, vecA, vecB2);
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
pSrcAVec += 8;
|
||
|
acc3 = vmlaldavaq(acc3, vecA2, vecB2);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
/*
|
||
|
* tail
|
||
|
*/
|
||
|
blkCnt = numColsA & 7;
|
||
|
if (blkCnt > 0U) {
|
||
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
|
||
|
vecA2 = vld1q(pSrcA2Vec);
|
||
|
acc1 = vmlaldavaq_p(acc1, vecA2, vecB, p0);
|
||
|
vecB2 = vld1q(pSrcB2Vec);
|
||
|
acc2 = vmlaldavaq_p(acc2, vecA, vecB2, p0);
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
acc3 = vmlaldavaq_p(acc3, vecA2, vecB2, p0);
|
||
|
}
|
||
|
|
||
|
*px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
|
||
|
*px++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
|
||
|
*px2++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
|
||
|
*px2++ = (q15_t) MVE_ASRL_SAT16(acc3, 15);
|
||
|
j += numRowsB * 2;
|
||
|
/*
|
||
|
* Decrement the column loop counter
|
||
|
*/
|
||
|
col--;
|
||
|
|
||
|
}
|
||
|
|
||
|
i = i + numColsA * 2;
|
||
|
px = px2 + (numColsB & 1u);
|
||
|
px2 = px + numColsB;
|
||
|
/*
|
||
|
* Decrement the row loop counter
|
||
|
*/
|
||
|
row--;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Compute remaining row and/or column below
|
||
|
*/
|
||
|
|
||
|
if (numColsB & 1u) {
|
||
|
row = numRowsA & (~0x1); //avoid redundant computation
|
||
|
px = pDst->pData + numColsB - 1;
|
||
|
i = 0;
|
||
|
|
||
|
/*
|
||
|
* row loop
|
||
|
*/
|
||
|
while (row > 0) {
|
||
|
q15_t const *pSrcAVec, *pSrcBVec;
|
||
|
q15x8_t vecA, vecB;
|
||
|
q63_t acc0;
|
||
|
|
||
|
/*
|
||
|
* point to last column in matrix B
|
||
|
*/
|
||
|
pInB = pSrcBT + numRowsB * (numColsB - 1);
|
||
|
pInA = pSrcA->pData + i;
|
||
|
|
||
|
pSrcAVec = (q15_t const *) pInA;
|
||
|
pSrcBVec = (q15_t const *) pInB;
|
||
|
|
||
|
acc0 = 0LL;
|
||
|
blkCnt = (numColsA) / 8;
|
||
|
while (blkCnt > 0U) {
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
pSrcAVec += 8;
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
pSrcBVec += 8;
|
||
|
acc0 = vmlaldavaq(acc0, vecA, vecB);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
/*
|
||
|
* tail
|
||
|
*/
|
||
|
blkCnt = (numColsA & 7);
|
||
|
if (blkCnt > 0U) {
|
||
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
|
||
|
}
|
||
|
|
||
|
*px = (q15_t) MVE_ASRL_SAT16(acc0, 15);
|
||
|
|
||
|
px += numColsB;
|
||
|
|
||
|
i += numColsA;
|
||
|
/*
|
||
|
* Decrement the row loop counter
|
||
|
*/
|
||
|
row--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (numRowsA & 1u) {
|
||
|
col = numColsB;
|
||
|
i = 0u;
|
||
|
/*
|
||
|
* point to last row in output matrix
|
||
|
*/
|
||
|
px = pDst->pData + (numColsB) * (numRowsA - 1);
|
||
|
/*
|
||
|
* col loop
|
||
|
*/
|
||
|
while (col > 0) {
|
||
|
q15_t const *pSrcAVec, *pSrcBVec;
|
||
|
q15x8_t vecA, vecB;
|
||
|
q63_t acc0;
|
||
|
|
||
|
/*
|
||
|
* point to last row in matrix A
|
||
|
*/
|
||
|
pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
|
||
|
pInB = pSrcBT + i;
|
||
|
|
||
|
/*
|
||
|
* Set the variable sum, that acts as accumulator, to zero
|
||
|
*/
|
||
|
pSrcAVec = (q15_t const *) pInA;
|
||
|
pSrcBVec = (q15_t const *) pInB;
|
||
|
acc0 = 0LL;
|
||
|
|
||
|
blkCnt = ((numColsA) / 8);
|
||
|
while (blkCnt > 0U) {
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
pSrcAVec += 8;
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
pSrcBVec += 8;
|
||
|
acc0 = vmlaldavaq(acc0, vecA, vecB);
|
||
|
|
||
|
blkCnt--;
|
||
|
}
|
||
|
/*
|
||
|
* tail
|
||
|
*/
|
||
|
blkCnt = (numColsA & 7);
|
||
|
if (blkCnt > 0U) {
|
||
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
||
|
vecA = vld1q(pSrcAVec);
|
||
|
vecB = vld1q(pSrcBVec);
|
||
|
acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
|
||
|
}
|
||
|
|
||
|
*px++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
|
||
|
|
||
|
i += numColsA;
|
||
|
|
||
|
/*
|
||
|
* Decrement the col loop counter
|
||
|
*/
|
||
|
col--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Set status as ARM_MATH_SUCCESS */
|
||
|
status = ARM_MATH_SUCCESS;
|
||
|
}
|
||
|
/* Return to application */
|
||
|
return (status);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
arm_status arm_mat_mult_q15(
|
||
|
const arm_matrix_instance_q15 * pSrcA,
|
||
|
const arm_matrix_instance_q15 * pSrcB,
|
||
|
arm_matrix_instance_q15 * pDst,
|
||
|
q15_t * pState)
|
||
|
{
|
||
|
q63_t sum; /* Accumulator */
|
||
|
|
||
|
#if defined (ARM_MATH_DSP) /* != CM0 */
|
||
|
|
||
|
q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
|
||
|
q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
|
||
|
q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
|
||
|
q15_t *px; /* Temporary output data matrix pointer */
|
||
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
||
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
||
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
||
|
uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix B */
|
||
|
uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
|
||
|
arm_status status; /* Status of matrix multiplication */
|
||
|
|
||
|
q31_t inA1, inB1, inA2, inB2;
|
||
|
arm_matrix_instance_q15 BT;
|
||
|
|
||
|
#ifdef ARM_MATH_MATRIX_CHECK
|
||
|
|
||
|
/* Check for matrix mismatch condition */
|
||
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
||
|
(pSrcA->numRows != pDst->numRows) ||
|
||
|
(pSrcB->numCols != pDst->numCols) )
|
||
|
{
|
||
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
||
|
status = ARM_MATH_SIZE_MISMATCH;
|
||
|
}
|
||
|
else
|
||
|
|
||
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
||
|
{
|
||
|
|
||
|
BT.numRows = numColsB;
|
||
|
BT.numCols = numRowsB;
|
||
|
BT.pData = pSrcBT;
|
||
|
|
||
|
arm_mat_trans_q15(pSrcB,&BT);
|
||
|
/* Reset variables for usage in following multiplication process */
|
||
|
row = numRowsA;
|
||
|
i = 0U;
|
||
|
px = pDst->pData;
|
||
|
|
||
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
||
|
/* row loop */
|
||
|
do
|
||
|
{
|
||
|
/* For every row wise process, column loop counter is to be initiated */
|
||
|
col = numColsB;
|
||
|
|
||
|
/* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
|
||
|
pInB = pSrcBT;
|
||
|
|
||
|
/* column loop */
|
||
|
do
|
||
|
{
|
||
|
/* Set variable sum, that acts as accumulator, to zero */
|
||
|
sum = 0;
|
||
|
|
||
|
/* Initiate pointer pInA to point to starting address of column being processed */
|
||
|
pInA = pSrcA->pData + i;
|
||
|
|
||
|
/* Apply loop unrolling and compute 2 MACs simultaneously. */
|
||
|
colCnt = numColsA >> 2U;
|
||
|
|
||
|
/* matrix multiplication */
|
||
|
while (colCnt > 0U)
|
||
|
{
|
||
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
||
|
|
||
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
||
|
inA1 = read_q15x2_ia (&pInA);
|
||
|
inB1 = read_q15x2_ia (&pInB);
|
||
|
|
||
|
inA2 = read_q15x2_ia (&pInA);
|
||
|
inB2 = read_q15x2_ia (&pInB);
|
||
|
|
||
|
/* Multiply and Accumulates */
|
||
|
sum = __SMLALD(inA1, inB1, sum);
|
||
|
sum = __SMLALD(inA2, inB2, sum);
|
||
|
|
||
|
/* Decrement loop counter */
|
||
|
colCnt--;
|
||
|
}
|
||
|
|
||
|
/* process remaining column samples */
|
||
|
colCnt = numColsA % 0x4U;
|
||
|
|
||
|
while (colCnt > 0U)
|
||
|
{
|
||
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
||
|
sum += *pInA++ * *pInB++;
|
||
|
|
||
|
/* Decrement loop counter */
|
||
|
colCnt--;
|
||
|
}
|
||
|
|
||
|
/* Saturate and store result in destination buffer */
|
||
|
*px = (q15_t) (__SSAT((sum >> 15), 16));
|
||
|
px++;
|
||
|
|
||
|
/* Decrement column loop counter */
|
||
|
col--;
|
||
|
|
||
|
} while (col > 0U);
|
||
|
|
||
|
i = i + numColsA;
|
||
|
|
||
|
/* Decrement row loop counter */
|
||
|
row--;
|
||
|
|
||
|
} while (row > 0U);
|
||
|
|
||
|
#else /* #if defined (ARM_MATH_DSP) */
|
||
|
|
||
|
q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
|
||
|
q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
|
||
|
q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
|
||
|
q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
|
||
|
q15_t *pOut = pDst->pData; /* Output data matrix pointer */
|
||
|
q15_t *px; /* Temporary output data matrix pointer */
|
||
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
||
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
||
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
||
|
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
|
||
|
arm_status status; /* Status of matrix multiplication */
|
||
|
(void)pState;
|
||
|
|
||
|
#ifdef ARM_MATH_MATRIX_CHECK
|
||
|
|
||
|
/* Check for matrix mismatch condition */
|
||
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
||
|
(pSrcA->numRows != pDst->numRows) ||
|
||
|
(pSrcB->numCols != pDst->numCols) )
|
||
|
{
|
||
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
||
|
status = ARM_MATH_SIZE_MISMATCH;
|
||
|
}
|
||
|
else
|
||
|
|
||
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
||
|
|
||
|
{
|
||
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
||
|
/* row loop */
|
||
|
do
|
||
|
{
|
||
|
/* Output pointer is set to starting address of the row being processed */
|
||
|
px = pOut + i;
|
||
|
|
||
|
/* For every row wise process, column loop counter is to be initiated */
|
||
|
col = numColsB;
|
||
|
|
||
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
||
|
pIn2 = pSrcB->pData;
|
||
|
|
||
|
/* column loop */
|
||
|
do
|
||
|
{
|
||
|
/* Set the variable sum, that acts as accumulator, to zero */
|
||
|
sum = 0;
|
||
|
|
||
|
/* Initiate pointer pIn1 to point to starting address of pSrcA */
|
||
|
pIn1 = pInA;
|
||
|
|
||
|
/* Matrix A columns number of MAC operations are to be performed */
|
||
|
colCnt = numColsA;
|
||
|
|
||
|
/* matrix multiplication */
|
||
|
while (colCnt > 0U)
|
||
|
{
|
||
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
||
|
|
||
|
/* Perform multiply-accumulates */
|
||
|
sum += (q31_t) * pIn1++ * *pIn2;
|
||
|
pIn2 += numColsB;
|
||
|
|
||
|
/* Decrement loop counter */
|
||
|
colCnt--;
|
||
|
}
|
||
|
|
||
|
/* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */
|
||
|
|
||
|
/* Saturate and store result in destination buffer */
|
||
|
*px++ = (q15_t) __SSAT((sum >> 15), 16);
|
||
|
|
||
|
/* Decrement column loop counter */
|
||
|
col--;
|
||
|
|
||
|
/* Update pointer pIn2 to point to starting address of next column */
|
||
|
pIn2 = pInB + (numColsB - col);
|
||
|
|
||
|
} while (col > 0U);
|
||
|
|
||
|
/* Update pointer pSrcA to point to starting address of next row */
|
||
|
i = i + numColsB;
|
||
|
pInA = pInA + numColsA;
|
||
|
|
||
|
/* Decrement row loop counter */
|
||
|
row--;
|
||
|
|
||
|
} while (row > 0U);
|
||
|
|
||
|
#endif /* #if defined (ARM_MATH_DSP) */
|
||
|
|
||
|
/* Set status as ARM_MATH_SUCCESS */
|
||
|
status = ARM_MATH_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/* Return to application */
|
||
|
return (status);
|
||
|
}
|
||
|
#endif /* defined(ARM_MATH_MVEI) */
|
||
|
|
||
|
/**
|
||
|
@} end of MatrixMult group
|
||
|
*/
|