stm32f407-openocd/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c

510 lines
12 KiB
C
Raw Normal View History

2024-06-12 08:32:58 +00:00
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_ldl_f32.c
* Description: Floating-point LDL decomposition
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions.h"
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
/// @private
#define SWAP_ROWS_F32(A,i,j) \
{ \
int cnt = n; \
\
for(int w=0;w < n; w+=4) \
{ \
f32x4_t tmpa,tmpb; \
mve_pred16_t p0 = vctp32q(cnt); \
\
tmpa=vldrwq_z_f32(&A[i*n + w],p0);\
tmpb=vldrwq_z_f32(&A[j*n + w],p0);\
\
vstrwq_p(&A[i*n + w], tmpb, p0); \
vstrwq_p(&A[j*n + w], tmpa, p0); \
\
cnt -= 4; \
} \
}
/// @private
#define SWAP_COLS_F32(A,i,j) \
for(int w=0;w < n; w++) \
{ \
float32_t tmp; \
tmp = A[w*n + i]; \
A[w*n + i] = A[w*n + j];\
A[w*n + j] = tmp; \
}
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixChol
@{
*/
/**
* @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
* @param[in] pSrc points to the instance of the input floating-point matrix structure.
* @param[out] pl points to the instance of the output floating-point triangular matrix structure.
* @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
* @param[out] pp points to the instance of the output floating-point permutation vector.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* @return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
* @par
* Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
*/
arm_status arm_mat_ldlt_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pl,
arm_matrix_instance_f32 * pd,
uint16_t * pp)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrc->numRows != pSrc->numCols) ||
(pl->numRows != pl->numCols) ||
(pd->numRows != pd->numCols) ||
(pl->numRows != pd->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
const int n=pSrc->numRows;
int fullRank = 1, diag,k;
float32_t *pA;
memset(pd->pData,0,sizeof(float32_t)*n*n);
memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
pA = pl->pData;
int cnt = n;
uint16x8_t vecP;
for(int k=0;k < n; k+=8)
{
mve_pred16_t p0;
p0 = vctp16q(cnt);
vecP = vidupq_u16((uint16_t)k, 1);
vstrhq_p(&pp[k], vecP, p0);
cnt -= 8;
}
for(k=0;k < n; k++)
{
/* Find pivot */
float32_t m=F32_MIN,a;
int j=k;
for(int r=k;r<n;r++)
{
if (pA[r*n+r] > m)
{
m = pA[r*n+r];
j = r;
}
}
if(j != k)
{
SWAP_ROWS_F32(pA,k,j);
SWAP_COLS_F32(pA,k,j);
}
pp[k] = j;
a = pA[k*n+k];
if (fabsf(a) < 1.0e-8f)
{
fullRank = 0;
break;
}
float32_t invA;
invA = 1.0f / a;
int32x4_t vecOffs;
int w;
vecOffs = vidupq_u32((uint32_t)0, 1);
vecOffs = vmulq_n_s32(vecOffs,n);
for(w=k+1; w<n; w+=4)
{
int cnt = n - k - 1;
f32x4_t vecX;
f32x4_t vecA;
f32x4_t vecW0,vecW1, vecW2, vecW3;
mve_pred16_t p0;
vecW0 = vdupq_n_f32(pA[(w + 0)*n+k]);
vecW1 = vdupq_n_f32(pA[(w + 1)*n+k]);
vecW2 = vdupq_n_f32(pA[(w + 2)*n+k]);
vecW3 = vdupq_n_f32(pA[(w + 3)*n+k]);
for(int x=k+1;x<n;x += 4)
{
p0 = vctp32q(cnt);
//pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], (uint32x4_t)vecOffs, p0);
vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
vecA = vldrwq_z_f32(&pA[(w + 0)*n+x],p0);
vecA = vfmsq_m(vecA, vecW0, vecX, p0);
vstrwq_p(&pA[(w + 0)*n+x], vecA, p0);
vecA = vldrwq_z_f32(&pA[(w + 1)*n+x],p0);
vecA = vfmsq_m(vecA, vecW1, vecX, p0);
vstrwq_p(&pA[(w + 1)*n+x], vecA, p0);
vecA = vldrwq_z_f32(&pA[(w + 2)*n+x],p0);
vecA = vfmsq_m(vecA, vecW2, vecX, p0);
vstrwq_p(&pA[(w + 2)*n+x], vecA, p0);
vecA = vldrwq_z_f32(&pA[(w + 3)*n+x],p0);
vecA = vfmsq_m(vecA, vecW3, vecX, p0);
vstrwq_p(&pA[(w + 3)*n+x], vecA, p0);
cnt -= 4;
}
}
for(; w<n; w++)
{
int cnt = n - k - 1;
f32x4_t vecA,vecX,vecW;
mve_pred16_t p0;
vecW = vdupq_n_f32(pA[w*n+k]);
for(int x=k+1;x<n;x += 4)
{
p0 = vctp32q(cnt);
//pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
vecA = vldrwq_z_f32(&pA[w*n+x],p0);
vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], (uint32x4_t)vecOffs, p0);
vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
vecA = vfmsq_m(vecA, vecW, vecX, p0);
vstrwq_p(&pA[w*n+x], vecA, p0);
cnt -= 4;
}
}
for(int w=k+1;w<n;w++)
{
pA[w*n+k] = pA[w*n+k] * invA;
}
}
diag=k;
if (!fullRank)
{
diag--;
for(int row=0; row < n;row++)
{
mve_pred16_t p0;
int cnt= n-k;
f32x4_t zero=vdupq_n_f32(0.0f);
for(int col=k; col < n;col += 4)
{
p0 = vctp32q(cnt);
vstrwq_p(&pl->pData[row*n+col], zero, p0);
cnt -= 4;
}
}
}
for(int row=0; row < n;row++)
{
mve_pred16_t p0;
int cnt= n-row-1;
f32x4_t zero=vdupq_n_f32(0.0f);
for(int col=row+1; col < n;col+=4)
{
p0 = vctp32q(cnt);
vstrwq_p(&pl->pData[row*n+col], zero, p0);
cnt -= 4;
}
}
for(int d=0; d < diag;d++)
{
pd->pData[d*n+d] = pl->pData[d*n+d];
pl->pData[d*n+d] = 1.0;
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
/// @private
#define SWAP_ROWS_F32(A,i,j) \
for(w=0;w < n; w++) \
{ \
float32_t tmp; \
tmp = A[i*n + w]; \
A[i*n + w] = A[j*n + w];\
A[j*n + w] = tmp; \
}
/// @private
#define SWAP_COLS_F32(A,i,j) \
for(w=0;w < n; w++) \
{ \
float32_t tmp; \
tmp = A[w*n + i]; \
A[w*n + i] = A[w*n + j];\
A[w*n + j] = tmp; \
}
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixChol
@{
*/
/**
* @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
* @param[in] pSrc points to the instance of the input floating-point matrix structure.
* @param[out] pl points to the instance of the output floating-point triangular matrix structure.
* @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
* @param[out] pp points to the instance of the output floating-point permutation vector.
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
* @return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
- \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
* @par
* Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
*/
arm_status arm_mat_ldlt_f32(
const arm_matrix_instance_f32 * pSrc,
arm_matrix_instance_f32 * pl,
arm_matrix_instance_f32 * pd,
uint16_t * pp)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrc->numRows != pSrc->numCols) ||
(pl->numRows != pl->numCols) ||
(pd->numRows != pd->numCols) ||
(pl->numRows != pd->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
const int n=pSrc->numRows;
int fullRank = 1, diag,k;
float32_t *pA;
int row,d;
memset(pd->pData,0,sizeof(float32_t)*n*n);
memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
pA = pl->pData;
for(k=0;k < n; k++)
{
pp[k] = k;
}
for(k=0;k < n; k++)
{
/* Find pivot */
float32_t m=F32_MIN,a;
int j=k;
int r;
int w;
for(r=k;r<n;r++)
{
if (pA[r*n+r] > m)
{
m = pA[r*n+r];
j = r;
}
}
if(j != k)
{
SWAP_ROWS_F32(pA,k,j);
SWAP_COLS_F32(pA,k,j);
}
pp[k] = j;
a = pA[k*n+k];
if (fabsf(a) < 1.0e-8f)
{
fullRank = 0;
break;
}
for(w=k+1;w<n;w++)
{
int x;
for(x=k+1;x<n;x++)
{
pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * pA[x*n+k] / a;
}
}
for(w=k+1;w<n;w++)
{
pA[w*n+k] = pA[w*n+k] / a;
}
}
diag=k;
if (!fullRank)
{
diag--;
for(row=0; row < n;row++)
{
int col;
for(col=k; col < n;col++)
{
pl->pData[row*n+col]=0.0;
}
}
}
for(row=0; row < n;row++)
{
int col;
for(col=row+1; col < n;col++)
{
pl->pData[row*n+col] = 0.0;
}
}
for(d=0; d < diag;d++)
{
pd->pData[d*n+d] = pl->pData[d*n+d];
pl->pData[d*n+d] = 1.0;
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of MatrixChol group
*/