241 lines
6.6 KiB
C
241 lines
6.6 KiB
C
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS DSP Library
|
||
|
* Title: arm_cmplx_mag_f16.c
|
||
|
* Description: Floating-point complex magnitude
|
||
|
*
|
||
|
* $Date: 23 April 2021
|
||
|
* $Revision: V1.9.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M and Cortex-A cores
|
||
|
* -------------------------------------------------------------------- */
|
||
|
/*
|
||
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include "dsp/complex_math_functions_f16.h"
|
||
|
|
||
|
#if defined(ARM_FLOAT16_SUPPORTED)
|
||
|
/**
|
||
|
@ingroup groupCmplxMath
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@defgroup cmplx_mag Complex Magnitude
|
||
|
|
||
|
Computes the magnitude of the elements of a complex data vector.
|
||
|
|
||
|
The <code>pSrc</code> points to the source data and
|
||
|
<code>pDst</code> points to the where the result should be written.
|
||
|
<code>numSamples</code> specifies the number of complex samples
|
||
|
in the input array and the data is stored in an interleaved fashion
|
||
|
(real, imag, real, imag, ...).
|
||
|
The input array has a total of <code>2*numSamples</code> values;
|
||
|
the output array has a total of <code>numSamples</code> values.
|
||
|
|
||
|
The underlying algorithm is used:
|
||
|
|
||
|
<pre>
|
||
|
for (n = 0; n < numSamples; n++) {
|
||
|
pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
|
||
|
}
|
||
|
</pre>
|
||
|
|
||
|
There are separate functions for floating-point, Q15, and Q31 data types.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@addtogroup cmplx_mag
|
||
|
@{
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
@brief Floating-point complex magnitude.
|
||
|
@param[in] pSrc points to input vector
|
||
|
@param[out] pDst points to output vector
|
||
|
@param[in] numSamples number of samples in each vector
|
||
|
@return none
|
||
|
*/
|
||
|
|
||
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||
|
|
||
|
#include "arm_helium_utils.h"
|
||
|
|
||
|
|
||
|
void arm_cmplx_mag_f16(
|
||
|
const float16_t * pSrc,
|
||
|
float16_t * pDst,
|
||
|
uint32_t numSamples)
|
||
|
{
|
||
|
int32_t blockSize = numSamples; /* loop counters */
|
||
|
uint32_t blkCnt; /* loop counters */
|
||
|
f16x8x2_t vecSrc;
|
||
|
f16x8_t sum;
|
||
|
|
||
|
/* Compute 4 complex samples at a time */
|
||
|
blkCnt = blockSize >> 3;
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
q15x8_t newtonStartVec;
|
||
|
f16x8_t sumHalf, invSqrt;
|
||
|
|
||
|
vecSrc = vld2q(pSrc);
|
||
|
pSrc += 16;
|
||
|
sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
|
||
|
sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
|
||
|
|
||
|
/*
|
||
|
* inlined Fast SQRT using inverse SQRT newton-raphson method
|
||
|
*/
|
||
|
|
||
|
/* compute initial value */
|
||
|
newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1);
|
||
|
sumHalf = sum * 0.5f;
|
||
|
/*
|
||
|
* compute 3 x iterations
|
||
|
*
|
||
|
* The more iterations, the more accuracy.
|
||
|
* If you need to trade a bit of accuracy for more performance,
|
||
|
* you can comment out the 3rd use of the macro.
|
||
|
*/
|
||
|
INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec);
|
||
|
INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
|
||
|
INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
|
||
|
/*
|
||
|
* set negative values to 0
|
||
|
*/
|
||
|
invSqrt = vdupq_m(invSqrt, (float16_t)0.0f, vcmpltq(invSqrt, (float16_t)0.0f));
|
||
|
/*
|
||
|
* sqrt(x) = x * invSqrt(x)
|
||
|
*/
|
||
|
sum = vmulq(sum, invSqrt);
|
||
|
vstrhq_f16(pDst, sum);
|
||
|
pDst += 8;
|
||
|
/*
|
||
|
* Decrement the blockSize loop counter
|
||
|
*/
|
||
|
blkCnt--;
|
||
|
}
|
||
|
/*
|
||
|
* tail
|
||
|
*/
|
||
|
blkCnt = blockSize & 7;
|
||
|
if (blkCnt > 0U)
|
||
|
{
|
||
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
||
|
q15x8_t newtonStartVec;
|
||
|
f16x8_t sumHalf, invSqrt;
|
||
|
|
||
|
vecSrc = vld2q((float16_t const *)pSrc);
|
||
|
sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
|
||
|
sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
|
||
|
|
||
|
/*
|
||
|
* inlined Fast SQRT using inverse SQRT newton-raphson method
|
||
|
*/
|
||
|
|
||
|
/* compute initial value */
|
||
|
newtonStartVec = vdupq_n_s16(INVSQRT_MAGIC_F16) - vshrq((q15x8_t) sum, 1);
|
||
|
sumHalf = vmulq(sum, (float16_t)0.5);
|
||
|
/*
|
||
|
* compute 2 x iterations
|
||
|
*/
|
||
|
INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, (f16x8_t) newtonStartVec);
|
||
|
INVSQRT_NEWTON_MVE_F16(invSqrt, sumHalf, invSqrt);
|
||
|
/*
|
||
|
* set negative values to 0
|
||
|
*/
|
||
|
invSqrt = vdupq_m(invSqrt, (float16_t)0.0, vcmpltq(invSqrt, (float16_t)0.0));
|
||
|
/*
|
||
|
* sqrt(x) = x * invSqrt(x)
|
||
|
*/
|
||
|
sum = vmulq(sum, invSqrt);
|
||
|
vstrhq_p_f16(pDst, sum, p0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
void arm_cmplx_mag_f16(
|
||
|
const float16_t * pSrc,
|
||
|
float16_t * pDst,
|
||
|
uint32_t numSamples)
|
||
|
{
|
||
|
uint32_t blkCnt; /* loop counter */
|
||
|
_Float16 real, imag; /* Temporary variables to hold input values */
|
||
|
|
||
|
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
|
||
|
|
||
|
/* Loop unrolling: Compute 4 outputs at a time */
|
||
|
blkCnt = numSamples >> 2U;
|
||
|
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||
|
|
||
|
real = *pSrc++;
|
||
|
imag = *pSrc++;
|
||
|
|
||
|
/* store result in destination buffer. */
|
||
|
arm_sqrt_f16((real * real) + (imag * imag), pDst++);
|
||
|
|
||
|
real = *pSrc++;
|
||
|
imag = *pSrc++;
|
||
|
arm_sqrt_f16((real * real) + (imag * imag), pDst++);
|
||
|
|
||
|
real = *pSrc++;
|
||
|
imag = *pSrc++;
|
||
|
arm_sqrt_f16((real * real) + (imag * imag), pDst++);
|
||
|
|
||
|
real = *pSrc++;
|
||
|
imag = *pSrc++;
|
||
|
arm_sqrt_f16((real * real) + (imag * imag), pDst++);
|
||
|
|
||
|
/* Decrement loop counter */
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
/* Loop unrolling: Compute remaining outputs */
|
||
|
blkCnt = numSamples % 0x4U;
|
||
|
|
||
|
#else
|
||
|
|
||
|
/* Initialize blkCnt with number of samples */
|
||
|
blkCnt = numSamples;
|
||
|
|
||
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
||
|
|
||
|
while (blkCnt > 0U)
|
||
|
{
|
||
|
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
|
||
|
|
||
|
real = *pSrc++;
|
||
|
imag = *pSrc++;
|
||
|
|
||
|
/* store result in destination buffer. */
|
||
|
arm_sqrt_f16((real * real) + (imag * imag), pDst++);
|
||
|
|
||
|
/* Decrement loop counter */
|
||
|
blkCnt--;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
||
|
|
||
|
/**
|
||
|
@} end of cmplx_mag group
|
||
|
*/
|
||
|
|
||
|
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|