299 lines
9.8 KiB
C
299 lines
9.8 KiB
C
|
/******************************************************************************
|
||
|
* @file svm_functions_f16.h
|
||
|
* @brief Public header file for CMSIS DSP Library
|
||
|
* @version V1.9.0
|
||
|
* @date 23 April 2021
|
||
|
* Target Processor: Cortex-M and Cortex-A cores
|
||
|
******************************************************************************/
|
||
|
/*
|
||
|
* Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef _SVM_FUNCTIONS_F16_H_
|
||
|
#define _SVM_FUNCTIONS_F16_H_
|
||
|
|
||
|
#include "arm_math_types_f16.h"
|
||
|
#include "arm_math_memory.h"
|
||
|
|
||
|
#include "dsp/none.h"
|
||
|
#include "dsp/utils.h"
|
||
|
#include "dsp/svm_defines.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C"
|
||
|
{
|
||
|
#endif
|
||
|
|
||
|
#if defined(ARM_FLOAT16_SUPPORTED)
|
||
|
|
||
|
#define STEP(x) (x) <= 0 ? 0 : 1
|
||
|
|
||
|
/**
|
||
|
* @defgroup groupSVM SVM Functions
|
||
|
* This set of functions is implementing SVM classification on 2 classes.
|
||
|
* The training must be done from scikit-learn. The parameters can be easily
|
||
|
* generated from the scikit-learn object. Some examples are given in
|
||
|
* DSP/Testing/PatternGeneration/SVM.py
|
||
|
*
|
||
|
* If more than 2 classes are needed, the functions in this folder
|
||
|
* will have to be used, as building blocks, to do multi-class classification.
|
||
|
*
|
||
|
* No multi-class classification is provided in this SVM folder.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief Integer exponentiation
|
||
|
* @param[in] x value
|
||
|
* @param[in] nb integer exponent >= 1
|
||
|
* @return x^nb
|
||
|
*
|
||
|
*/
|
||
|
__STATIC_INLINE float16_t arm_exponent_f16(float16_t x, int32_t nb)
|
||
|
{
|
||
|
float16_t r = x;
|
||
|
nb --;
|
||
|
while(nb > 0)
|
||
|
{
|
||
|
r = r * x;
|
||
|
nb--;
|
||
|
}
|
||
|
return(r);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Instance structure for linear SVM prediction function.
|
||
|
*/
|
||
|
typedef struct
|
||
|
{
|
||
|
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||
|
uint32_t vectorDimension; /**< Dimension of vector space */
|
||
|
float16_t intercept; /**< Intercept */
|
||
|
const float16_t *dualCoefficients; /**< Dual coefficients */
|
||
|
const float16_t *supportVectors; /**< Support vectors */
|
||
|
const int32_t *classes; /**< The two SVM classes */
|
||
|
} arm_svm_linear_instance_f16;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Instance structure for polynomial SVM prediction function.
|
||
|
*/
|
||
|
typedef struct
|
||
|
{
|
||
|
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||
|
uint32_t vectorDimension; /**< Dimension of vector space */
|
||
|
float16_t intercept; /**< Intercept */
|
||
|
const float16_t *dualCoefficients; /**< Dual coefficients */
|
||
|
const float16_t *supportVectors; /**< Support vectors */
|
||
|
const int32_t *classes; /**< The two SVM classes */
|
||
|
int32_t degree; /**< Polynomial degree */
|
||
|
float16_t coef0; /**< Polynomial constant */
|
||
|
float16_t gamma; /**< Gamma factor */
|
||
|
} arm_svm_polynomial_instance_f16;
|
||
|
|
||
|
/**
|
||
|
* @brief Instance structure for rbf SVM prediction function.
|
||
|
*/
|
||
|
typedef struct
|
||
|
{
|
||
|
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||
|
uint32_t vectorDimension; /**< Dimension of vector space */
|
||
|
float16_t intercept; /**< Intercept */
|
||
|
const float16_t *dualCoefficients; /**< Dual coefficients */
|
||
|
const float16_t *supportVectors; /**< Support vectors */
|
||
|
const int32_t *classes; /**< The two SVM classes */
|
||
|
float16_t gamma; /**< Gamma factor */
|
||
|
} arm_svm_rbf_instance_f16;
|
||
|
|
||
|
/**
|
||
|
* @brief Instance structure for sigmoid SVM prediction function.
|
||
|
*/
|
||
|
typedef struct
|
||
|
{
|
||
|
uint32_t nbOfSupportVectors; /**< Number of support vectors */
|
||
|
uint32_t vectorDimension; /**< Dimension of vector space */
|
||
|
float16_t intercept; /**< Intercept */
|
||
|
const float16_t *dualCoefficients; /**< Dual coefficients */
|
||
|
const float16_t *supportVectors; /**< Support vectors */
|
||
|
const int32_t *classes; /**< The two SVM classes */
|
||
|
float16_t coef0; /**< Independent constant */
|
||
|
float16_t gamma; /**< Gamma factor */
|
||
|
} arm_svm_sigmoid_instance_f16;
|
||
|
|
||
|
/**
|
||
|
* @brief SVM linear instance init function
|
||
|
* @param[in] S Parameters for SVM functions
|
||
|
* @param[in] nbOfSupportVectors Number of support vectors
|
||
|
* @param[in] vectorDimension Dimension of vector space
|
||
|
* @param[in] intercept Intercept
|
||
|
* @param[in] dualCoefficients Array of dual coefficients
|
||
|
* @param[in] supportVectors Array of support vectors
|
||
|
* @param[in] classes Array of 2 classes ID
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S,
|
||
|
uint32_t nbOfSupportVectors,
|
||
|
uint32_t vectorDimension,
|
||
|
float16_t intercept,
|
||
|
const float16_t *dualCoefficients,
|
||
|
const float16_t *supportVectors,
|
||
|
const int32_t *classes);
|
||
|
|
||
|
/**
|
||
|
* @brief SVM linear prediction
|
||
|
* @param[in] S Pointer to an instance of the linear SVM structure.
|
||
|
* @param[in] in Pointer to input vector
|
||
|
* @param[out] pResult Decision value
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S,
|
||
|
const float16_t * in,
|
||
|
int32_t * pResult);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief SVM polynomial instance init function
|
||
|
* @param[in] S points to an instance of the polynomial SVM structure.
|
||
|
* @param[in] nbOfSupportVectors Number of support vectors
|
||
|
* @param[in] vectorDimension Dimension of vector space
|
||
|
* @param[in] intercept Intercept
|
||
|
* @param[in] dualCoefficients Array of dual coefficients
|
||
|
* @param[in] supportVectors Array of support vectors
|
||
|
* @param[in] classes Array of 2 classes ID
|
||
|
* @param[in] degree Polynomial degree
|
||
|
* @param[in] coef0 coeff0 (scikit-learn terminology)
|
||
|
* @param[in] gamma gamma (scikit-learn terminology)
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S,
|
||
|
uint32_t nbOfSupportVectors,
|
||
|
uint32_t vectorDimension,
|
||
|
float16_t intercept,
|
||
|
const float16_t *dualCoefficients,
|
||
|
const float16_t *supportVectors,
|
||
|
const int32_t *classes,
|
||
|
int32_t degree,
|
||
|
float16_t coef0,
|
||
|
float16_t gamma
|
||
|
);
|
||
|
|
||
|
/**
|
||
|
* @brief SVM polynomial prediction
|
||
|
* @param[in] S Pointer to an instance of the polynomial SVM structure.
|
||
|
* @param[in] in Pointer to input vector
|
||
|
* @param[out] pResult Decision value
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S,
|
||
|
const float16_t * in,
|
||
|
int32_t * pResult);
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief SVM radial basis function instance init function
|
||
|
* @param[in] S points to an instance of the polynomial SVM structure.
|
||
|
* @param[in] nbOfSupportVectors Number of support vectors
|
||
|
* @param[in] vectorDimension Dimension of vector space
|
||
|
* @param[in] intercept Intercept
|
||
|
* @param[in] dualCoefficients Array of dual coefficients
|
||
|
* @param[in] supportVectors Array of support vectors
|
||
|
* @param[in] classes Array of 2 classes ID
|
||
|
* @param[in] gamma gamma (scikit-learn terminology)
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S,
|
||
|
uint32_t nbOfSupportVectors,
|
||
|
uint32_t vectorDimension,
|
||
|
float16_t intercept,
|
||
|
const float16_t *dualCoefficients,
|
||
|
const float16_t *supportVectors,
|
||
|
const int32_t *classes,
|
||
|
float16_t gamma
|
||
|
);
|
||
|
|
||
|
/**
|
||
|
* @brief SVM rbf prediction
|
||
|
* @param[in] S Pointer to an instance of the rbf SVM structure.
|
||
|
* @param[in] in Pointer to input vector
|
||
|
* @param[out] pResult decision value
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S,
|
||
|
const float16_t * in,
|
||
|
int32_t * pResult);
|
||
|
|
||
|
/**
|
||
|
* @brief SVM sigmoid instance init function
|
||
|
* @param[in] S points to an instance of the rbf SVM structure.
|
||
|
* @param[in] nbOfSupportVectors Number of support vectors
|
||
|
* @param[in] vectorDimension Dimension of vector space
|
||
|
* @param[in] intercept Intercept
|
||
|
* @param[in] dualCoefficients Array of dual coefficients
|
||
|
* @param[in] supportVectors Array of support vectors
|
||
|
* @param[in] classes Array of 2 classes ID
|
||
|
* @param[in] coef0 coeff0 (scikit-learn terminology)
|
||
|
* @param[in] gamma gamma (scikit-learn terminology)
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S,
|
||
|
uint32_t nbOfSupportVectors,
|
||
|
uint32_t vectorDimension,
|
||
|
float16_t intercept,
|
||
|
const float16_t *dualCoefficients,
|
||
|
const float16_t *supportVectors,
|
||
|
const int32_t *classes,
|
||
|
float16_t coef0,
|
||
|
float16_t gamma
|
||
|
);
|
||
|
|
||
|
/**
|
||
|
* @brief SVM sigmoid prediction
|
||
|
* @param[in] S Pointer to an instance of the rbf SVM structure.
|
||
|
* @param[in] in Pointer to input vector
|
||
|
* @param[out] pResult Decision value
|
||
|
* @return none.
|
||
|
*
|
||
|
*/
|
||
|
void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S,
|
||
|
const float16_t * in,
|
||
|
int32_t * pResult);
|
||
|
|
||
|
|
||
|
|
||
|
#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif /* ifndef _SVM_FUNCTIONS_F16_H_ */
|