stm32f407-openocd/Drivers/CMSIS/DSP/Include/dsp/quaternion_math_functions.h

160 lines
5.5 KiB
C
Raw Normal View History

2024-06-12 08:32:58 +00:00
/******************************************************************************
* @file quaternion_math_functions.h
* @brief Public header file for CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
*
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _QUATERNION_MATH_FUNCTIONS_H_
#define _QUATERNION_MATH_FUNCTIONS_H_
#include "arm_math_types.h"
#include "arm_math_memory.h"
#include "dsp/none.h"
#include "dsp/utils.h"
#ifdef __cplusplus
extern "C"
{
#endif
/**
* @defgroup groupQuaternionMath Quaternion Math Functions
* Functions to operates on quaternions and convert between a
* rotation and quaternion representation.
*/
/**
@brief Floating-point quaternion Norm.
@param[in] pInputQuaternions points to the input vector of quaternions
@param[out] pNorms points to the output vector of norms
@param[in] nbQuaternions number of quaternions in each vector
@return none
*/
void arm_quaternion_norm_f32(const float32_t *pInputQuaternions,
float32_t *pNorms,
uint32_t nbQuaternions);
/**
@brief Floating-point quaternion inverse.
@param[in] pInputQuaternions points to the input vector of quaternions
@param[out] pInverseQuaternions points to the output vector of inverse quaternions
@param[in] nbQuaternions number of quaternions in each vector
@return none
*/
void arm_quaternion_inverse_f32(const float32_t *pInputQuaternions,
float32_t *pInverseQuaternions,
uint32_t nbQuaternions);
/**
@brief Floating-point quaternion conjugates.
@param[in] pInputQuaternions points to the input vector of quaternions
@param[out] pConjugateQuaternions points to the output vector of conjugate quaternions
@param[in] nbQuaternions number of quaternions in each vector
@return none
*/
void arm_quaternion_conjugate_f32(const float32_t *inputQuaternions,
float32_t *pConjugateQuaternions,
uint32_t nbQuaternions);
/**
@brief Floating-point normalization of quaternions.
@param[in] pInputQuaternions points to the input vector of quaternions
@param[out] pNormalizedQuaternions points to the output vector of normalized quaternions
@param[in] nbQuaternions number of quaternions in each vector
@return none
*/
void arm_quaternion_normalize_f32(const float32_t *inputQuaternions,
float32_t *pNormalizedQuaternions,
uint32_t nbQuaternions);
/**
@brief Floating-point product of two quaternions.
@param[in] qa First quaternion
@param[in] qb Second quaternion
@param[out] r Product of two quaternions
@return none
*/
void arm_quaternion_product_single_f32(const float32_t *qa,
const float32_t *qb,
float32_t *r);
/**
@brief Floating-point elementwise product two quaternions.
@param[in] qa First array of quaternions
@param[in] qb Second array of quaternions
@param[out] r Elementwise product of quaternions
@param[in] nbQuaternions Number of quaternions in the array
@return none
*/
void arm_quaternion_product_f32(const float32_t *qa,
const float32_t *qb,
float32_t *r,
uint32_t nbQuaternions);
/**
* @brief Conversion of quaternion to equivalent rotation matrix.
* @param[in] pInputQuaternions points to an array of normalized quaternions
* @param[out] pOutputRotations points to an array of 3x3 rotations (in row order)
* @param[in] nbQuaternions in the array
* @return none.
*
* <b>Format of rotation matrix</b>
* \par
* The quaternion a + ib + jc + kd is converted into rotation matrix:
* a^2 + b^2 - c^2 - d^2 2bc - 2ad 2bd + 2ac
* 2bc + 2ad a^2 - b^2 + c^2 - d^2 2cd - 2ab
* 2bd - 2ac 2cd + 2ab a^2 - b^2 - c^2 + d^2
*
* Rotation matrix is saved in row order : R00 R01 R02 R10 R11 R12 R20 R21 R22
*/
void arm_quaternion2rotation_f32(const float32_t *pInputQuaternions,
float32_t *pOutputRotations,
uint32_t nbQuaternions);
/**
* @brief Conversion of a rotation matrix to equivalent quaternion.
* @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
* @param[out] pOutputQuaternions points to an array of quaternions
* @param[in] nbQuaternions in the array
* @return none.
*/
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
float32_t *pOutputQuaternions,
uint32_t nbQuaternions);
#ifdef __cplusplus
}
#endif
#endif /* ifndef _QUATERNION_MATH_FUNCTIONS_H_ */