stm32f407-openocd/Drivers/STM32F4xx_HAL_Driver/Src/stm32f4xx_ll_fmc.c

1500 lines
54 KiB
C
Raw Permalink Normal View History

2024-06-12 08:32:58 +00:00
/**
******************************************************************************
* @file stm32f4xx_ll_fmc.c
* @author MCD Application Team
* @brief FMC Low Layer HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Flexible Memory Controller (FMC) peripheral memories:
* + Initialization/de-initialization functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### FMC peripheral features #####
==============================================================================
[..] The Flexible memory controller (FMC) includes following memory controllers:
(+) The NOR/PSRAM memory controller
(+) The NAND/PC Card memory controller
(+) The Synchronous DRAM (SDRAM) controller
[..] The FMC functional block makes the interface with synchronous and asynchronous static
memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are:
(+) to translate AHB transactions into the appropriate external device protocol
(+) to meet the access time requirements of the external memory devices
[..] All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique Chip Select. The FMC performs
only one access at a time to an external device.
The main features of the FMC controller are the following:
(+) Interface with static-memory mapped devices including:
(++) Static random access memory (SRAM)
(++) Read-only memory (ROM)
(++) NOR Flash memory/OneNAND Flash memory
(++) PSRAM (4 memory banks)
(++) 16-bit PC Card compatible devices
(++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of
data
(+) Interface with synchronous DRAM (SDRAM) memories
(+) Independent Chip Select control for each memory bank
(+) Independent configuration for each memory bank
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_hal.h"
/** @addtogroup STM32F4xx_HAL_Driver
* @{
*/
#if defined(HAL_NOR_MODULE_ENABLED) || (defined(HAL_NAND_MODULE_ENABLED)) || defined(HAL_PCCARD_MODULE_ENABLED) || defined(HAL_SDRAM_MODULE_ENABLED)\
|| defined(HAL_SRAM_MODULE_ENABLED)
/** @defgroup FMC_LL FMC Low Layer
* @brief FMC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FMC_LL_Private_Constants FMC Low Layer Private Constants
* @{
*/
/* ----------------------- FMC registers bit mask --------------------------- */
#if defined(FMC_Bank1)
/* --- BCR Register ---*/
/* BCR register clear mask */
/* --- BTR Register ---*/
/* BTR register clear mask */
#define BTR_CLEAR_MASK ((uint32_t)(FMC_BTR1_ADDSET | FMC_BTR1_ADDHLD |\
FMC_BTR1_DATAST | FMC_BTR1_BUSTURN |\
FMC_BTR1_CLKDIV | FMC_BTR1_DATLAT |\
FMC_BTR1_ACCMOD))
/* --- BWTR Register ---*/
/* BWTR register clear mask */
#define BWTR_CLEAR_MASK ((uint32_t)(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD |\
FMC_BWTR1_DATAST | FMC_BWTR1_BUSTURN |\
FMC_BWTR1_ACCMOD))
#endif /* FMC_Bank1 */
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
#if defined (FMC_PCR_PWAITEN)
/* --- PCR Register ---*/
/* PCR register clear mask */
#define PCR_CLEAR_MASK ((uint32_t)(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | \
FMC_PCR_PTYP | FMC_PCR_PWID | \
FMC_PCR_ECCEN | FMC_PCR_TCLR | \
FMC_PCR_TAR | FMC_PCR_ECCPS))
/* --- PMEM Register ---*/
/* PMEM register clear mask */
#define PMEM_CLEAR_MASK ((uint32_t)(FMC_PMEM_MEMSET2 | FMC_PMEM_MEMWAIT2 |\
FMC_PMEM_MEMHOLD2 | FMC_PMEM_MEMHIZ2))
/* --- PATT Register ---*/
/* PATT register clear mask */
#define PATT_CLEAR_MASK ((uint32_t)(FMC_PATT_ATTSET2 | FMC_PATT_ATTWAIT2 |\
FMC_PATT_ATTHOLD2 | FMC_PATT_ATTHIZ2))
#else
/* --- PCR Register ---*/
/* PCR register clear mask */
#define PCR_CLEAR_MASK ((uint32_t)(FMC_PCR2_PWAITEN | FMC_PCR2_PBKEN | \
FMC_PCR2_PTYP | FMC_PCR2_PWID | \
FMC_PCR2_ECCEN | FMC_PCR2_TCLR | \
FMC_PCR2_TAR | FMC_PCR2_ECCPS))
/* --- PMEM Register ---*/
/* PMEM register clear mask */
#define PMEM_CLEAR_MASK ((uint32_t)(FMC_PMEM2_MEMSET2 | FMC_PMEM2_MEMWAIT2 |\
FMC_PMEM2_MEMHOLD2 | FMC_PMEM2_MEMHIZ2))
/* --- PATT Register ---*/
/* PATT register clear mask */
#define PATT_CLEAR_MASK ((uint32_t)(FMC_PATT2_ATTSET2 | FMC_PATT2_ATTWAIT2 |\
FMC_PATT2_ATTHOLD2 | FMC_PATT2_ATTHIZ2))
#endif /* FMC_PCR_PWAITEN */
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
#if defined(FMC_Bank4)
/* --- PCR Register ---*/
/* PCR register clear mask */
#define PCR4_CLEAR_MASK ((uint32_t)(FMC_PCR4_PWAITEN | FMC_PCR4_PBKEN | \
FMC_PCR4_PTYP | FMC_PCR4_PWID | \
FMC_PCR4_ECCEN | FMC_PCR4_TCLR | \
FMC_PCR4_TAR | FMC_PCR4_ECCPS))
/* --- PMEM Register ---*/
/* PMEM register clear mask */
#define PMEM4_CLEAR_MASK ((uint32_t)(FMC_PMEM4_MEMSET4 | FMC_PMEM4_MEMWAIT4 |\
FMC_PMEM4_MEMHOLD4 | FMC_PMEM4_MEMHIZ4))
/* --- PATT Register ---*/
/* PATT register clear mask */
#define PATT4_CLEAR_MASK ((uint32_t)(FMC_PATT4_ATTSET4 | FMC_PATT4_ATTWAIT4 |\
FMC_PATT4_ATTHOLD4 | FMC_PATT4_ATTHIZ4))
/* --- PIO4 Register ---*/
/* PIO4 register clear mask */
#define PIO4_CLEAR_MASK ((uint32_t)(FMC_PIO4_IOSET4 | FMC_PIO4_IOWAIT4 | \
FMC_PIO4_IOHOLD4 | FMC_PIO4_IOHIZ4))
#endif /* FMC_Bank4 */
#if defined(FMC_Bank5_6)
/* --- SDCR Register ---*/
/* SDCR register clear mask */
#define SDCR_CLEAR_MASK ((uint32_t)(FMC_SDCR1_NC | FMC_SDCR1_NR | \
FMC_SDCR1_MWID | FMC_SDCR1_NB | \
FMC_SDCR1_CAS | FMC_SDCR1_WP | \
FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | \
FMC_SDCR1_RPIPE))
/* --- SDTR Register ---*/
/* SDTR register clear mask */
#define SDTR_CLEAR_MASK ((uint32_t)(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | \
FMC_SDTR1_TRAS | FMC_SDTR1_TRC | \
FMC_SDTR1_TWR | FMC_SDTR1_TRP | \
FMC_SDTR1_TRCD))
#endif /* FMC_Bank5_6 */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FMC_LL_Exported_Functions FMC Low Layer Exported Functions
* @{
*/
#if defined(FMC_Bank1)
/** @defgroup FMC_LL_Exported_Functions_NORSRAM FMC Low Layer NOR SRAM Exported Functions
* @brief NORSRAM Controller functions
*
@verbatim
==============================================================================
##### How to use NORSRAM device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC NORSRAM banks in order
to run the NORSRAM external devices.
(+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit()
(+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init()
(+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init()
(+) FMC NORSRAM bank extended timing configuration using the function
FMC_NORSRAM_Extended_Timing_Init()
(+) FMC NORSRAM bank enable/disable write operation using the functions
FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable()
@endverbatim
* @{
*/
/** @defgroup FMC_LL_NORSRAM_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC NORSRAM interface
(+) De-initialize the FMC NORSRAM interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initialize the FMC_NORSRAM device according to the specified
* control parameters in the FMC_NORSRAM_InitTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Init Pointer to NORSRAM Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_InitTypeDef *Init)
{
uint32_t flashaccess;
uint32_t btcr_reg;
uint32_t mask;
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank));
assert_param(IS_FMC_MUX(Init->DataAddressMux));
assert_param(IS_FMC_MEMORY(Init->MemoryType));
assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth));
assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode));
assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity));
#if defined(FMC_BCR1_WRAPMOD)
assert_param(IS_FMC_WRAP_MODE(Init->WrapMode));
#endif /* FMC_BCR1_WRAPMOD */
assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive));
assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation));
assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal));
assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode));
assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait));
assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst));
#if defined(FMC_BCR1_CCLKEN)
assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock));
#endif
#if defined(FMC_BCR1_WFDIS)
assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo));
#endif /* FMC_BCR1_WFDIS */
assert_param(IS_FMC_PAGESIZE(Init->PageSize));
/* Disable NORSRAM Device */
__FMC_NORSRAM_DISABLE(Device, Init->NSBank);
/* Set NORSRAM device control parameters */
if (Init->MemoryType == FMC_MEMORY_TYPE_NOR)
{
flashaccess = FMC_NORSRAM_FLASH_ACCESS_ENABLE;
}
else
{
flashaccess = FMC_NORSRAM_FLASH_ACCESS_DISABLE;
}
btcr_reg = (flashaccess | \
Init->DataAddressMux | \
Init->MemoryType | \
Init->MemoryDataWidth | \
Init->BurstAccessMode | \
Init->WaitSignalPolarity | \
Init->WaitSignalActive | \
Init->WriteOperation | \
Init->WaitSignal | \
Init->ExtendedMode | \
Init->AsynchronousWait | \
Init->WriteBurst);
#if defined(FMC_BCR1_WRAPMOD)
btcr_reg |= Init->WrapMode;
#endif /* FMC_BCR1_WRAPMOD */
#if defined(FMC_BCR1_CCLKEN)
btcr_reg |= Init->ContinuousClock;
#endif /* FMC_BCR1_CCLKEN */
#if defined(FMC_BCR1_WFDIS)
btcr_reg |= Init->WriteFifo;
#endif /* FMC_BCR1_WFDIS */
btcr_reg |= Init->PageSize;
mask = (FMC_BCR1_MBKEN |
FMC_BCR1_MUXEN |
FMC_BCR1_MTYP |
FMC_BCR1_MWID |
FMC_BCR1_FACCEN |
FMC_BCR1_BURSTEN |
FMC_BCR1_WAITPOL |
FMC_BCR1_WAITCFG |
FMC_BCR1_WREN |
FMC_BCR1_WAITEN |
FMC_BCR1_EXTMOD |
FMC_BCR1_ASYNCWAIT |
FMC_BCR1_CBURSTRW);
#if defined(FMC_BCR1_WRAPMOD)
mask |= FMC_BCR1_WRAPMOD;
#endif /* FMC_BCR1_WRAPMOD */
#if defined(FMC_BCR1_CCLKEN)
mask |= FMC_BCR1_CCLKEN;
#endif
#if defined(FMC_BCR1_WFDIS)
mask |= FMC_BCR1_WFDIS;
#endif /* FMC_BCR1_WFDIS */
mask |= FMC_BCR1_CPSIZE;
MODIFY_REG(Device->BTCR[Init->NSBank], mask, btcr_reg);
#if defined(FMC_BCR1_CCLKEN)
/* Configure synchronous mode when Continuous clock is enabled for bank2..4 */
if ((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1))
{
MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN, Init->ContinuousClock);
}
#endif
#if defined(FMC_BCR1_WFDIS)
if (Init->NSBank != FMC_NORSRAM_BANK1)
{
/* Configure Write FIFO mode when Write Fifo is enabled for bank2..4 */
SET_BIT(Device->BTCR[FMC_NORSRAM_BANK1], (uint32_t)(Init->WriteFifo));
}
#endif /* FMC_BCR1_WFDIS */
return HAL_OK;
}
/**
* @brief DeInitialize the FMC_NORSRAM peripheral
* @param Device Pointer to NORSRAM device instance
* @param ExDevice Pointer to NORSRAM extended mode device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Disable the FMC_NORSRAM device */
__FMC_NORSRAM_DISABLE(Device, Bank);
/* De-initialize the FMC_NORSRAM device */
/* FMC_NORSRAM_BANK1 */
if (Bank == FMC_NORSRAM_BANK1)
{
Device->BTCR[Bank] = 0x000030DBU;
}
/* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */
else
{
Device->BTCR[Bank] = 0x000030D2U;
}
Device->BTCR[Bank + 1U] = 0x0FFFFFFFU;
ExDevice->BWTR[Bank] = 0x0FFFFFFFU;
return HAL_OK;
}
/**
* @brief Initialize the FMC_NORSRAM Timing according to the specified
* parameters in the FMC_NORSRAM_TimingTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Timing Pointer to NORSRAM Timing structure
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device,
FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank)
{
#if defined(FMC_BCR1_CCLKEN)
uint32_t tmpr;
#endif
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime));
assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime));
assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration));
assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision));
assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency));
assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Set FMC_NORSRAM device timing parameters */
MODIFY_REG(Device->BTCR[Bank + 1U], BTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BTR1_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BTR1_DATAST_Pos) |
((Timing->BusTurnAroundDuration) << FMC_BTR1_BUSTURN_Pos) |
(((Timing->CLKDivision) - 1U) << FMC_BTR1_CLKDIV_Pos) |
(((Timing->DataLatency) - 2U) << FMC_BTR1_DATLAT_Pos) |
(Timing->AccessMode)));
#if defined(FMC_BCR1_CCLKEN)
/* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */
if (HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN))
{
tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1U] & ~((0x0FU) << FMC_BTR1_CLKDIV_Pos));
tmpr |= (uint32_t)(((Timing->CLKDivision) - 1U) << FMC_BTR1_CLKDIV_Pos);
MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1 + 1U], FMC_BTR1_CLKDIV, tmpr);
}
#endif
return HAL_OK;
}
/**
* @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified
* parameters in the FMC_NORSRAM_TimingTypeDef
* @param Device Pointer to NORSRAM device instance
* @param Timing Pointer to NORSRAM Timing structure
* @param Bank NORSRAM bank number
* @param ExtendedMode FMC Extended Mode
* This parameter can be one of the following values:
* @arg FMC_EXTENDED_MODE_DISABLE
* @arg FMC_EXTENDED_MODE_ENABLE
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device,
FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank,
uint32_t ExtendedMode)
{
/* Check the parameters */
assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode));
/* Set NORSRAM device timing register for write configuration, if extended mode is used */
if (ExtendedMode == FMC_EXTENDED_MODE_ENABLE)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device));
assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime));
assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime));
assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration));
assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Set NORSRAM device timing register for write configuration, if extended mode is used */
MODIFY_REG(Device->BWTR[Bank], BWTR_CLEAR_MASK, (Timing->AddressSetupTime |
((Timing->AddressHoldTime) << FMC_BWTR1_ADDHLD_Pos) |
((Timing->DataSetupTime) << FMC_BWTR1_DATAST_Pos) |
Timing->AccessMode |
((Timing->BusTurnAroundDuration) << FMC_BWTR1_BUSTURN_Pos)));
}
else
{
Device->BWTR[Bank] = 0x0FFFFFFFU;
}
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2
* @brief management functions
*
@verbatim
==============================================================================
##### FMC_NORSRAM Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the FMC NORSRAM interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically FMC_NORSRAM write operation.
* @param Device Pointer to NORSRAM device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Enable write operation */
SET_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE);
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NORSRAM write operation.
* @param Device Pointer to NORSRAM device instance
* @param Bank NORSRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_DEVICE(Device));
assert_param(IS_FMC_NORSRAM_BANK(Bank));
/* Disable write operation */
CLEAR_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE);
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
#endif /* FMC_Bank1 */
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
/** @defgroup FMC_LL_Exported_Functions_NAND FMC Low Layer NAND Exported Functions
* @brief NAND Controller functions
*
@verbatim
==============================================================================
##### How to use NAND device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC NAND banks in order
to run the NAND external devices.
(+) FMC NAND bank reset using the function FMC_NAND_DeInit()
(+) FMC NAND bank control configuration using the function FMC_NAND_Init()
(+) FMC NAND bank common space timing configuration using the function
FMC_NAND_CommonSpace_Timing_Init()
(+) FMC NAND bank attribute space timing configuration using the function
FMC_NAND_AttributeSpace_Timing_Init()
(+) FMC NAND bank enable/disable ECC correction feature using the functions
FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable()
(+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC()
@endverbatim
* @{
*/
/** @defgroup FMC_LL_NAND_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC NAND interface
(+) De-initialize the FMC NAND interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initializes the FMC_NAND device according to the specified
* control parameters in the FMC_NAND_HandleTypeDef
* @param Device Pointer to NAND device instance
* @param Init Pointer to NAND Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Init->NandBank));
assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature));
assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth));
assert_param(IS_FMC_ECC_STATE(Init->EccComputation));
assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize));
assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime));
assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime));
#if defined(FMC_Bank2_3)
/* Set NAND device control parameters */
if (Init->NandBank == FMC_NAND_BANK2)
{
/* NAND bank 2 registers configuration */
MODIFY_REG(Device->PCR2, PCR_CLEAR_MASK, (Init->Waitfeature |
FMC_PCR_MEMORY_TYPE_NAND |
Init->MemoryDataWidth |
Init->EccComputation |
Init->ECCPageSize |
((Init->TCLRSetupTime) << FMC_PCR2_TCLR_Pos) |
((Init->TARSetupTime) << FMC_PCR2_TAR_Pos)));
}
else
{
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PCR3, PCR_CLEAR_MASK, (Init->Waitfeature |
FMC_PCR_MEMORY_TYPE_NAND |
Init->MemoryDataWidth |
Init->EccComputation |
Init->ECCPageSize |
((Init->TCLRSetupTime) << FMC_PCR2_TCLR_Pos) |
((Init->TARSetupTime) << FMC_PCR2_TAR_Pos)));
}
#else
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PCR, PCR_CLEAR_MASK, (Init->Waitfeature |
FMC_PCR_MEMORY_TYPE_NAND |
Init->MemoryDataWidth |
Init->EccComputation |
Init->ECCPageSize |
((Init->TCLRSetupTime) << FMC_PCR_TCLR_Pos) |
((Init->TARSetupTime) << FMC_PCR_TAR_Pos)));
#endif
return HAL_OK;
}
/**
* @brief Initializes the FMC_NAND Common space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to NAND device instance
* @param Timing Pointer to NAND timing structure
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
assert_param(IS_FMC_NAND_BANK(Bank));
#if defined(FMC_Bank2_3)
/* Set FMC_NAND device timing parameters */
if (Bank == FMC_NAND_BANK2)
{
/* NAND bank 2 registers configuration */
MODIFY_REG(Device->PMEM2, PMEM_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PMEM2_MEMWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PMEM2_MEMHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PMEM2_MEMHIZ2_Pos)));
}
else
{
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PMEM3, PMEM_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PMEM2_MEMWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PMEM2_MEMHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PMEM2_MEMHIZ2_Pos)));
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PMEM, PMEM_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PMEM_MEMWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PMEM_MEMHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PMEM_MEMHIZ2_Pos)));
#endif
return HAL_OK;
}
/**
* @brief Initializes the FMC_NAND Attribute space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to NAND device instance
* @param Timing Pointer to NAND timing structure
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
assert_param(IS_FMC_NAND_BANK(Bank));
#if defined(FMC_Bank2_3)
/* Set FMC_NAND device timing parameters */
if (Bank == FMC_NAND_BANK2)
{
/* NAND bank 2 registers configuration */
MODIFY_REG(Device->PATT2, PATT_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PATT2_ATTWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PATT2_ATTHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PATT2_ATTHIZ2_Pos)));
}
else
{
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PATT3, PATT_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PATT2_ATTWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PATT2_ATTHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PATT2_ATTHIZ2_Pos)));
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* NAND bank 3 registers configuration */
MODIFY_REG(Device->PATT, PATT_CLEAR_MASK, (Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PATT_ATTWAIT2_Pos) |
((Timing->HoldSetupTime) << FMC_PATT_ATTHOLD2_Pos) |
((Timing->HiZSetupTime) << FMC_PATT_ATTHIZ2_Pos)));
#endif
return HAL_OK;
}
/**
* @brief DeInitializes the FMC_NAND device
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Disable the NAND Bank */
__FMC_NAND_DISABLE(Device, Bank);
/* De-initialize the NAND Bank */
#if defined(FMC_Bank2_3)
if (Bank == FMC_NAND_BANK2)
{
/* Set the FMC_NAND_BANK2 registers to their reset values */
WRITE_REG(Device->PCR2, 0x00000018U);
WRITE_REG(Device->SR2, 0x00000040U);
WRITE_REG(Device->PMEM2, 0xFCFCFCFCU);
WRITE_REG(Device->PATT2, 0xFCFCFCFCU);
}
/* FMC_Bank3_NAND */
else
{
/* Set the FMC_NAND_BANK3 registers to their reset values */
WRITE_REG(Device->PCR3, 0x00000018U);
WRITE_REG(Device->SR3, 0x00000040U);
WRITE_REG(Device->PMEM3, 0xFCFCFCFCU);
WRITE_REG(Device->PATT3, 0xFCFCFCFCU);
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* Set the FMC_NAND_BANK3 registers to their reset values */
WRITE_REG(Device->PCR, 0x00000018U);
WRITE_REG(Device->SR, 0x00000040U);
WRITE_REG(Device->PMEM, 0xFCFCFCFCU);
WRITE_REG(Device->PATT, 0xFCFCFCFCU);
#endif
return HAL_OK;
}
/**
* @}
*/
/** @defgroup HAL_FMC_NAND_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
==============================================================================
##### FMC_NAND Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the FMC NAND interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Enable ECC feature */
#if defined(FMC_Bank2_3)
if (Bank == FMC_NAND_BANK2)
{
SET_BIT(Device->PCR2, FMC_PCR2_ECCEN);
}
else
{
SET_BIT(Device->PCR3, FMC_PCR2_ECCEN);
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
SET_BIT(Device->PCR, FMC_PCR_ECCEN);
#endif
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param Bank NAND bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Disable ECC feature */
#if defined(FMC_Bank2_3)
if (Bank == FMC_NAND_BANK2)
{
CLEAR_BIT(Device->PCR2, FMC_PCR2_ECCEN);
}
else
{
CLEAR_BIT(Device->PCR3, FMC_PCR2_ECCEN);
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
CLEAR_BIT(Device->PCR, FMC_PCR_ECCEN);
#endif
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_NAND ECC feature.
* @param Device Pointer to NAND device instance
* @param ECCval Pointer to ECC value
* @param Bank NAND bank number
* @param Timeout Timeout wait value
* @retval HAL status
*/
HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank,
uint32_t Timeout)
{
uint32_t tickstart;
/* Check the parameters */
assert_param(IS_FMC_NAND_DEVICE(Device));
assert_param(IS_FMC_NAND_BANK(Bank));
/* Get tick */
tickstart = HAL_GetTick();
/* Wait until FIFO is empty */
while (__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET)
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
{
return HAL_TIMEOUT;
}
}
}
#if defined(FMC_Bank2_3)
if (Bank == FMC_NAND_BANK2)
{
/* Get the ECCR2 register value */
*ECCval = (uint32_t)Device->ECCR2;
}
else
{
/* Get the ECCR3 register value */
*ECCval = (uint32_t)Device->ECCR3;
}
#else
/* Prevent unused argument(s) compilation warning if no assert_param check */
UNUSED(Bank);
/* Get the ECCR register value */
*ECCval = (uint32_t)Device->ECCR;
#endif
return HAL_OK;
}
/**
* @}
*/
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
#if defined(FMC_Bank4)
/** @addtogroup FMC_LL_PCCARD
* @brief PCCARD Controller functions
*
@verbatim
==============================================================================
##### How to use PCCARD device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC PCCARD bank in order
to run the PCCARD/compact flash external devices.
(+) FMC PCCARD bank reset using the function FMC_PCCARD_DeInit()
(+) FMC PCCARD bank control configuration using the function FMC_PCCARD_Init()
(+) FMC PCCARD bank common space timing configuration using the function
FMC_PCCARD_CommonSpace_Timing_Init()
(+) FMC PCCARD bank attribute space timing configuration using the function
FMC_PCCARD_AttributeSpace_Timing_Init()
(+) FMC PCCARD bank IO space timing configuration using the function
FMC_PCCARD_IOSpace_Timing_Init()
@endverbatim
* @{
*/
/** @addtogroup FMC_LL_PCCARD_Private_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC PCCARD interface
(+) De-initialize the FMC PCCARD interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initializes the FMC_PCCARD device according to the specified
* control parameters in the FMC_PCCARD_HandleTypeDef
* @param Device Pointer to PCCARD device instance
* @param Init Pointer to PCCARD Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_PCCARD_Init(FMC_PCCARD_TypeDef *Device, FMC_PCCARD_InitTypeDef *Init)
{
/* Check the parameters */
assert_param(IS_FMC_PCCARD_DEVICE(Device));
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature));
assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime));
assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime));
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
/* Set FMC_PCCARD device control parameters */
MODIFY_REG(Device->PCR4,
(FMC_PCR4_PTYP |
FMC_PCR4_PWAITEN |
FMC_PCR4_PWID |
FMC_PCR4_TCLR |
FMC_PCR4_TAR),
(FMC_PCR_MEMORY_TYPE_PCCARD |
Init->Waitfeature |
FMC_NAND_PCC_MEM_BUS_WIDTH_16 |
(Init->TCLRSetupTime << FMC_PCR4_TCLR_Pos) |
(Init->TARSetupTime << FMC_PCR4_TAR_Pos)));
return HAL_OK;
}
/**
* @brief Initializes the FMC_PCCARD Common space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to PCCARD device instance
* @param Timing Pointer to PCCARD timing structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_PCCARD_CommonSpace_Timing_Init(FMC_PCCARD_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing)
{
/* Check the parameters */
assert_param(IS_FMC_PCCARD_DEVICE(Device));
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
/* Set PCCARD timing parameters */
MODIFY_REG(Device->PMEM4, PMEM4_CLEAR_MASK,
(Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PMEM4_MEMWAIT4_Pos) |
((Timing->HoldSetupTime) << FMC_PMEM4_MEMHOLD4_Pos) |
((Timing->HiZSetupTime) << FMC_PMEM4_MEMHIZ4_Pos)));
return HAL_OK;
}
/**
* @brief Initializes the FMC_PCCARD Attribute space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to PCCARD device instance
* @param Timing Pointer to PCCARD timing structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_PCCARD_AttributeSpace_Timing_Init(FMC_PCCARD_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing)
{
/* Check the parameters */
assert_param(IS_FMC_PCCARD_DEVICE(Device));
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
/* Set PCCARD timing parameters */
MODIFY_REG(Device->PATT4, PATT4_CLEAR_MASK,
(Timing->SetupTime |
((Timing->WaitSetupTime) << FMC_PATT4_ATTWAIT4_Pos) |
((Timing->HoldSetupTime) << FMC_PATT4_ATTHOLD4_Pos) |
((Timing->HiZSetupTime) << FMC_PATT4_ATTHIZ4_Pos)));
return HAL_OK;
}
/**
* @brief Initializes the FMC_PCCARD IO space Timing according to the specified
* parameters in the FMC_NAND_PCC_TimingTypeDef
* @param Device Pointer to PCCARD device instance
* @param Timing Pointer to PCCARD timing structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_PCCARD_IOSpace_Timing_Init(FMC_PCCARD_TypeDef *Device,
FMC_NAND_PCC_TimingTypeDef *Timing)
{
/* Check the parameters */
assert_param(IS_FMC_PCCARD_DEVICE(Device));
#if defined(FMC_Bank3) || defined(FMC_Bank2_3)
assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime));
assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime));
#endif /* FMC_Bank3) || defined(FMC_Bank2_3 */
/* Set FMC_PCCARD device timing parameters */
MODIFY_REG(Device->PIO4, PIO4_CLEAR_MASK,
(Timing->SetupTime |
(Timing->WaitSetupTime << FMC_PIO4_IOWAIT4_Pos) |
(Timing->HoldSetupTime << FMC_PIO4_IOHOLD4_Pos) |
(Timing->HiZSetupTime << FMC_PIO4_IOHIZ4_Pos)));
return HAL_OK;
}
/**
* @brief DeInitializes the FMC_PCCARD device
* @param Device Pointer to PCCARD device instance
* @retval HAL status
*/
HAL_StatusTypeDef FMC_PCCARD_DeInit(FMC_PCCARD_TypeDef *Device)
{
/* Check the parameters */
assert_param(IS_FMC_PCCARD_DEVICE(Device));
/* Disable the FMC_PCCARD device */
__FMC_PCCARD_DISABLE(Device);
/* De-initialize the FMC_PCCARD device */
Device->PCR4 = 0x00000018U;
Device->SR4 = 0x00000040U;
Device->PMEM4 = 0xFCFCFCFCU;
Device->PATT4 = 0xFCFCFCFCU;
Device->PIO4 = 0xFCFCFCFCU;
return HAL_OK;
}
/**
* @}
*/
#endif /* FMC_Bank4 */
#if defined(FMC_Bank5_6)
/** @defgroup FMC_LL_SDRAM
* @brief SDRAM Controller functions
*
@verbatim
==============================================================================
##### How to use SDRAM device driver #####
==============================================================================
[..]
This driver contains a set of APIs to interface with the FMC SDRAM banks in order
to run the SDRAM external devices.
(+) FMC SDRAM bank reset using the function FMC_SDRAM_DeInit()
(+) FMC SDRAM bank control configuration using the function FMC_SDRAM_Init()
(+) FMC SDRAM bank timing configuration using the function FMC_SDRAM_Timing_Init()
(+) FMC SDRAM bank enable/disable write operation using the functions
FMC_SDRAM_WriteOperation_Enable()/FMC_SDRAM_WriteOperation_Disable()
(+) FMC SDRAM bank send command using the function FMC_SDRAM_SendCommand()
@endverbatim
* @{
*/
/** @addtogroup FMC_LL_SDRAM_Private_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de_initialization functions #####
==============================================================================
[..]
This section provides functions allowing to:
(+) Initialize and configure the FMC SDRAM interface
(+) De-initialize the FMC SDRAM interface
(+) Configure the FMC clock and associated GPIOs
@endverbatim
* @{
*/
/**
* @brief Initializes the FMC_SDRAM device according to the specified
* control parameters in the FMC_SDRAM_InitTypeDef
* @param Device Pointer to SDRAM device instance
* @param Init Pointer to SDRAM Initialization structure
* @retval HAL status
*/
HAL_StatusTypeDef FMC_SDRAM_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_InitTypeDef *Init)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_SDRAM_BANK(Init->SDBank));
assert_param(IS_FMC_COLUMNBITS_NUMBER(Init->ColumnBitsNumber));
assert_param(IS_FMC_ROWBITS_NUMBER(Init->RowBitsNumber));
assert_param(IS_FMC_SDMEMORY_WIDTH(Init->MemoryDataWidth));
assert_param(IS_FMC_INTERNALBANK_NUMBER(Init->InternalBankNumber));
assert_param(IS_FMC_CAS_LATENCY(Init->CASLatency));
assert_param(IS_FMC_WRITE_PROTECTION(Init->WriteProtection));
assert_param(IS_FMC_SDCLOCK_PERIOD(Init->SDClockPeriod));
assert_param(IS_FMC_READ_BURST(Init->ReadBurst));
assert_param(IS_FMC_READPIPE_DELAY(Init->ReadPipeDelay));
/* Set SDRAM bank configuration parameters */
if (Init->SDBank == FMC_SDRAM_BANK1)
{
MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK1],
SDCR_CLEAR_MASK,
(Init->ColumnBitsNumber |
Init->RowBitsNumber |
Init->MemoryDataWidth |
Init->InternalBankNumber |
Init->CASLatency |
Init->WriteProtection |
Init->SDClockPeriod |
Init->ReadBurst |
Init->ReadPipeDelay));
}
else /* FMC_Bank2_SDRAM */
{
MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK1],
FMC_SDCR1_SDCLK |
FMC_SDCR1_RBURST |
FMC_SDCR1_RPIPE,
(Init->SDClockPeriod |
Init->ReadBurst |
Init->ReadPipeDelay));
MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK2],
SDCR_CLEAR_MASK,
(Init->ColumnBitsNumber |
Init->RowBitsNumber |
Init->MemoryDataWidth |
Init->InternalBankNumber |
Init->CASLatency |
Init->WriteProtection));
}
return HAL_OK;
}
/**
* @brief Initializes the FMC_SDRAM device timing according to the specified
* parameters in the FMC_SDRAM_TimingTypeDef
* @param Device Pointer to SDRAM device instance
* @param Timing Pointer to SDRAM Timing structure
* @param Bank SDRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_SDRAM_Timing_Init(FMC_SDRAM_TypeDef *Device,
FMC_SDRAM_TimingTypeDef *Timing, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_LOADTOACTIVE_DELAY(Timing->LoadToActiveDelay));
assert_param(IS_FMC_EXITSELFREFRESH_DELAY(Timing->ExitSelfRefreshDelay));
assert_param(IS_FMC_SELFREFRESH_TIME(Timing->SelfRefreshTime));
assert_param(IS_FMC_ROWCYCLE_DELAY(Timing->RowCycleDelay));
assert_param(IS_FMC_WRITE_RECOVERY_TIME(Timing->WriteRecoveryTime));
assert_param(IS_FMC_RP_DELAY(Timing->RPDelay));
assert_param(IS_FMC_RCD_DELAY(Timing->RCDDelay));
assert_param(IS_FMC_SDRAM_BANK(Bank));
/* Set SDRAM device timing parameters */
if (Bank == FMC_SDRAM_BANK1)
{
MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK1],
SDTR_CLEAR_MASK,
(((Timing->LoadToActiveDelay) - 1U) |
(((Timing->ExitSelfRefreshDelay) - 1U) << FMC_SDTR1_TXSR_Pos) |
(((Timing->SelfRefreshTime) - 1U) << FMC_SDTR1_TRAS_Pos) |
(((Timing->RowCycleDelay) - 1U) << FMC_SDTR1_TRC_Pos) |
(((Timing->WriteRecoveryTime) - 1U) << FMC_SDTR1_TWR_Pos) |
(((Timing->RPDelay) - 1U) << FMC_SDTR1_TRP_Pos) |
(((Timing->RCDDelay) - 1U) << FMC_SDTR1_TRCD_Pos)));
}
else /* FMC_Bank2_SDRAM */
{
MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK1],
FMC_SDTR1_TRC |
FMC_SDTR1_TRP,
(((Timing->RowCycleDelay) - 1U) << FMC_SDTR1_TRC_Pos) |
(((Timing->RPDelay) - 1U) << FMC_SDTR1_TRP_Pos));
MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK2],
SDTR_CLEAR_MASK,
(((Timing->LoadToActiveDelay) - 1U) |
(((Timing->ExitSelfRefreshDelay) - 1U) << FMC_SDTR1_TXSR_Pos) |
(((Timing->SelfRefreshTime) - 1U) << FMC_SDTR1_TRAS_Pos) |
(((Timing->WriteRecoveryTime) - 1U) << FMC_SDTR1_TWR_Pos) |
(((Timing->RCDDelay) - 1U) << FMC_SDTR1_TRCD_Pos)));
}
return HAL_OK;
}
/**
* @brief DeInitializes the FMC_SDRAM peripheral
* @param Device Pointer to SDRAM device instance
* @retval HAL status
*/
HAL_StatusTypeDef FMC_SDRAM_DeInit(FMC_SDRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_SDRAM_BANK(Bank));
/* De-initialize the SDRAM device */
Device->SDCR[Bank] = 0x000002D0U;
Device->SDTR[Bank] = 0x0FFFFFFFU;
Device->SDCMR = 0x00000000U;
Device->SDRTR = 0x00000000U;
Device->SDSR = 0x00000000U;
return HAL_OK;
}
/**
* @}
*/
/** @addtogroup FMC_LL_SDRAMPrivate_Functions_Group2
* @brief management functions
*
@verbatim
==============================================================================
##### FMC_SDRAM Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control dynamically
the FMC SDRAM interface.
@endverbatim
* @{
*/
/**
* @brief Enables dynamically FMC_SDRAM write protection.
* @param Device Pointer to SDRAM device instance
* @param Bank SDRAM bank number
* @retval HAL status
*/
HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Enable(FMC_SDRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_SDRAM_BANK(Bank));
/* Enable write protection */
SET_BIT(Device->SDCR[Bank], FMC_SDRAM_WRITE_PROTECTION_ENABLE);
return HAL_OK;
}
/**
* @brief Disables dynamically FMC_SDRAM write protection.
* @param hsdram FMC_SDRAM handle
* @retval HAL status
*/
HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Disable(FMC_SDRAM_TypeDef *Device, uint32_t Bank)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_SDRAM_BANK(Bank));
/* Disable write protection */
CLEAR_BIT(Device->SDCR[Bank], FMC_SDRAM_WRITE_PROTECTION_ENABLE);
return HAL_OK;
}
/**
* @brief Send Command to the FMC SDRAM bank
* @param Device Pointer to SDRAM device instance
* @param Command Pointer to SDRAM command structure
* @param Timing Pointer to SDRAM Timing structure
* @param Timeout Timeout wait value
* @retval HAL state
*/
HAL_StatusTypeDef FMC_SDRAM_SendCommand(FMC_SDRAM_TypeDef *Device,
FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout)
{
uint32_t tickstart = 0U;
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_COMMAND_MODE(Command->CommandMode));
assert_param(IS_FMC_COMMAND_TARGET(Command->CommandTarget));
assert_param(IS_FMC_AUTOREFRESH_NUMBER(Command->AutoRefreshNumber));
assert_param(IS_FMC_MODE_REGISTER(Command->ModeRegisterDefinition));
/* Set command register */
MODIFY_REG(Device->SDCMR, (FMC_SDCMR_MODE | FMC_SDCMR_CTB2 | FMC_SDCMR_CTB1 | FMC_SDCMR_NRFS | FMC_SDCMR_MRD),
((Command->CommandMode) | (Command->CommandTarget) |
(((Command->AutoRefreshNumber) - 1U) << FMC_SDCMR_NRFS_Pos) |
((Command->ModeRegisterDefinition) << FMC_SDCMR_MRD_Pos)));
/* Get tick */
tickstart = HAL_GetTick();
/* wait until command is send */
while (HAL_IS_BIT_SET(Device->SDSR, FMC_SDSR_BUSY))
{
/* Check for the Timeout */
if (Timeout != HAL_MAX_DELAY)
{
if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
return HAL_OK;
}
/**
* @brief Program the SDRAM Memory Refresh rate.
* @param Device Pointer to SDRAM device instance
* @param RefreshRate The SDRAM refresh rate value.
* @retval HAL state
*/
HAL_StatusTypeDef FMC_SDRAM_ProgramRefreshRate(FMC_SDRAM_TypeDef *Device, uint32_t RefreshRate)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_REFRESH_RATE(RefreshRate));
/* Set the refresh rate in command register */
MODIFY_REG(Device->SDRTR, FMC_SDRTR_COUNT, (RefreshRate << FMC_SDRTR_COUNT_Pos));
return HAL_OK;
}
/**
* @brief Set the Number of consecutive SDRAM Memory auto Refresh commands.
* @param Device Pointer to SDRAM device instance
* @param AutoRefreshNumber Specifies the auto Refresh number.
* @retval None
*/
HAL_StatusTypeDef FMC_SDRAM_SetAutoRefreshNumber(FMC_SDRAM_TypeDef *Device,
uint32_t AutoRefreshNumber)
{
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_AUTOREFRESH_NUMBER(AutoRefreshNumber));
/* Set the Auto-refresh number in command register */
MODIFY_REG(Device->SDCMR, FMC_SDCMR_NRFS, ((AutoRefreshNumber - 1U) << FMC_SDCMR_NRFS_Pos));
return HAL_OK;
}
/**
* @brief Returns the indicated FMC SDRAM bank mode status.
* @param Device Pointer to SDRAM device instance
* @param Bank Defines the FMC SDRAM bank. This parameter can be
* FMC_Bank1_SDRAM or FMC_Bank2_SDRAM.
* @retval The FMC SDRAM bank mode status, could be on of the following values:
* FMC_SDRAM_NORMAL_MODE, FMC_SDRAM_SELF_REFRESH_MODE or
* FMC_SDRAM_POWER_DOWN_MODE.
*/
uint32_t FMC_SDRAM_GetModeStatus(const FMC_SDRAM_TypeDef *Device, uint32_t Bank)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_FMC_SDRAM_DEVICE(Device));
assert_param(IS_FMC_SDRAM_BANK(Bank));
/* Get the corresponding bank mode */
if (Bank == FMC_SDRAM_BANK1)
{
tmpreg = (uint32_t)(Device->SDSR & FMC_SDSR_MODES1);
}
else
{
tmpreg = ((uint32_t)(Device->SDSR & FMC_SDSR_MODES2) >> 2U);
}
/* Return the mode status */
return tmpreg;
}
/**
* @}
*/
/**
* @}
*/
#endif /* FMC_Bank5_6 */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_NOR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/