255 lines
8.6 KiB
C
255 lines
8.6 KiB
C
|
/*
|
||
|
* Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS NN Library
|
||
|
* Title: arm_svdf_s8.c
|
||
|
* Description: S8 basic SVDF layer function
|
||
|
*
|
||
|
* $Date: 15. April 2021
|
||
|
* $Revision: V.1.5.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M processors
|
||
|
*
|
||
|
* -------------------------------------------------------------------- */
|
||
|
|
||
|
#include "arm_nnfunctions.h"
|
||
|
#include "arm_nnsupportfunctions.h"
|
||
|
|
||
|
/**
|
||
|
* @ingroup groupNN
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @addtogroup SVDF
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* S8 SVDF layer function for TensorFlow Lite
|
||
|
*
|
||
|
* Refer to header file for details.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
|
||
|
const cmsis_nn_context *output_ctx,
|
||
|
const cmsis_nn_svdf_params *svdf_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *input_quant_params,
|
||
|
const cmsis_nn_per_tensor_quant_params *output_quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q7_t *input_data,
|
||
|
const cmsis_nn_dims *state_dims,
|
||
|
q15_t *state_data,
|
||
|
const cmsis_nn_dims *weights_feature_dims,
|
||
|
const q7_t *weights_feature_data,
|
||
|
const cmsis_nn_dims *weights_time_dims,
|
||
|
const q15_t *weights_time_data,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const q31_t *bias_data,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q7_t *output_data)
|
||
|
{
|
||
|
(void)bias_dims;
|
||
|
(void)state_dims;
|
||
|
(void)output_dims;
|
||
|
|
||
|
const q31_t multiplier_in = input_quant_params->multiplier;
|
||
|
const q31_t shift_in = input_quant_params->shift;
|
||
|
const q31_t multiplier_out = output_quant_params->multiplier;
|
||
|
const q31_t shift_2 = output_quant_params->shift;
|
||
|
const int32_t zp_in = svdf_params->input_offset;
|
||
|
const int32_t zp_out = svdf_params->output_offset;
|
||
|
const int32_t in_activation_min = svdf_params->input_activation.min;
|
||
|
const int32_t in_activation_max = svdf_params->input_activation.max;
|
||
|
const int32_t out_activation_min = svdf_params->output_activation.min;
|
||
|
const int32_t out_activation_max = svdf_params->output_activation.max;
|
||
|
const int16_t rank = svdf_params->rank;
|
||
|
|
||
|
const int32_t input_batches = input_dims->n;
|
||
|
const int32_t input_height = input_dims->h;
|
||
|
const int32_t feature_batches = weights_feature_dims->n;
|
||
|
const int32_t time_batches = weights_time_dims->h;
|
||
|
const int32_t unit_count = feature_batches / rank;
|
||
|
|
||
|
q31_t *buffer_a = (q31_t *)input_ctx->buf;
|
||
|
q31_t *buffer_b = (q31_t *)output_ctx->buf;
|
||
|
|
||
|
memmove((q15_t *)state_data,
|
||
|
(q15_t *)state_data + 1,
|
||
|
(size_t)(input_batches * feature_batches * time_batches * (int32_t)sizeof(int16_t)));
|
||
|
|
||
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||
|
{
|
||
|
q15_t *res_ptr = state_data + (time_batches * i_batch * feature_batches) + (time_batches - 1);
|
||
|
const q7_t *weight = weights_feature_data;
|
||
|
const q7_t *input = input_data + i_batch * input_height;
|
||
|
|
||
|
arm_status res = arm_nn_vec_mat_mult_t_svdf_s8(input,
|
||
|
weight,
|
||
|
res_ptr,
|
||
|
-zp_in,
|
||
|
0,
|
||
|
time_batches,
|
||
|
multiplier_in,
|
||
|
shift_in,
|
||
|
input_height,
|
||
|
feature_batches,
|
||
|
in_activation_min,
|
||
|
in_activation_max);
|
||
|
|
||
|
if (res != ARM_MATH_SUCCESS)
|
||
|
{
|
||
|
return res;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
q31_t *ptr_a = buffer_a;
|
||
|
const q15_t *v2 = state_data;
|
||
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||
|
{
|
||
|
const q15_t *v1 = weights_time_data;
|
||
|
|
||
|
for (int i_feature_batch = 0; i_feature_batch < feature_batches; i_feature_batch++)
|
||
|
{
|
||
|
*ptr_a = 0;
|
||
|
int32_t sum = 0;
|
||
|
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
|
||
|
int j = 0;
|
||
|
int32_t block_count = time_batches >> 1;
|
||
|
for (int i = 0; i < block_count; i++)
|
||
|
{
|
||
|
j += 2;
|
||
|
q31_t r1 = arm_nn_read_q15x2_ia(&v1);
|
||
|
q31_t r2 = arm_nn_read_q15x2_ia(&v2);
|
||
|
|
||
|
sum = __SMLAD(r1, r2, sum);
|
||
|
}
|
||
|
|
||
|
// Process the remaining data
|
||
|
for (; j < time_batches; j++)
|
||
|
{
|
||
|
sum += *v1 * *v2;
|
||
|
v1++;
|
||
|
v2++;
|
||
|
}
|
||
|
#else
|
||
|
for (int j = 0; j < time_batches; j++)
|
||
|
{
|
||
|
sum += *v1 * *v2;
|
||
|
v1++;
|
||
|
v2++;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
*ptr_a = sum;
|
||
|
ptr_a++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (bias_data)
|
||
|
{
|
||
|
if (unit_count == feature_batches)
|
||
|
{
|
||
|
for (int i = 0; i < input_batches; i++)
|
||
|
{
|
||
|
q31_t *output_temp = buffer_b + i * feature_batches;
|
||
|
const q31_t *ptr_a = buffer_a + i * feature_batches;
|
||
|
|
||
|
const int32_t *bi = bias_data;
|
||
|
for (int j = 0; j < feature_batches; j++)
|
||
|
{
|
||
|
output_temp[j] = ptr_a[j] + bi[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||
|
{
|
||
|
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||
|
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||
|
|
||
|
for (int i = 0; i < unit_count; i++)
|
||
|
{
|
||
|
int32_t sum = bias_data[i];
|
||
|
for (int j = 0; j < rank; j++)
|
||
|
{
|
||
|
sum += *ptr_a;
|
||
|
ptr_a++;
|
||
|
}
|
||
|
output_data_temp[i] = sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||
|
{
|
||
|
q31_t *output_data_temp = buffer_b + i_batch * unit_count;
|
||
|
q31_t *ptr_a = buffer_a + i_batch * feature_batches;
|
||
|
|
||
|
for (int i = 0; i < unit_count; i++)
|
||
|
{
|
||
|
int32_t sum = 0;
|
||
|
for (int j = 0; j < rank; j++)
|
||
|
{
|
||
|
sum += *ptr_a;
|
||
|
ptr_a++;
|
||
|
}
|
||
|
output_data_temp[i] = sum;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if defined(ARM_MATH_MVEI)
|
||
|
int32_t num_elements = input_batches * unit_count;
|
||
|
const int32_t loop_count = (num_elements + 3) / 4;
|
||
|
for (int i_op = 0; i_op < loop_count; i_op++)
|
||
|
{
|
||
|
mve_pred16_t p = vctp32q((uint32_t)num_elements);
|
||
|
int32x4_t op = vldrwq_z_s32(buffer_b, p);
|
||
|
op = arm_requantize_mve(op, multiplier_out, shift_2);
|
||
|
op = vaddq_n_s32(op, zp_out);
|
||
|
const int32x4_t min_vec = vdupq_n_s32((int8_t)out_activation_min);
|
||
|
const int32x4_t max_vec = vdupq_n_s32((int8_t)out_activation_max);
|
||
|
op = vmaxq_s32(op, min_vec);
|
||
|
op = vminq_s32(op, max_vec);
|
||
|
vstrbq_p_s32(output_data, op, p);
|
||
|
output_data += 4;
|
||
|
buffer_b += 4;
|
||
|
num_elements -= 4;
|
||
|
}
|
||
|
#else
|
||
|
for (int i = 0; i < input_batches * unit_count; i++)
|
||
|
{
|
||
|
output_data[i] = (q7_t)CLAMP(
|
||
|
arm_nn_requantize(buffer_b[i], multiplier_out, shift_2) + zp_out, out_activation_max, out_activation_min);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return (ARM_MATH_SUCCESS);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @} end of SVDF group
|
||
|
*/
|