stm32f407-openocd/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_depthwise_conv_s16.c

293 lines
14 KiB
C
Raw Permalink Normal View History

2024-06-12 08:32:58 +00:00
/*
* Copyright (C) 2022 Arm Limited or its affiliates.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* ----------------------------------------------------------------------
* Project: CMSIS NN Library
* Title: arm_depthwise_conv_s16.c
* Description: s16 version of depthwise convolution.
*
* $Date: 26. Jan 2022
* $Revision: V.1.0.0
*
* Target Processor: Cortex-M CPUs
*
* -------------------------------------------------------------------- */
#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"
/**
* @ingroup groupNN
*/
/**
* @addtogroup NNConv
* @{
*/
static void __attribute__((unused)) depthwise_conv_s16_mult_4_s16(const int16_t *input,
const int32_t input_x,
const int32_t input_y,
const int32_t input_ch,
const int8_t *kernel,
const int32_t output_ch,
const int32_t ch_mult,
const int32_t kernel_x,
const int32_t kernel_y,
const int32_t pad_x,
const int32_t pad_y,
const int32_t stride_x,
const int32_t stride_y,
const int64_t *bias,
int16_t *output,
const int32_t *output_shift,
const int32_t *output_mult,
const int32_t output_x,
const int32_t output_y,
const int32_t output_activation_min,
const int32_t output_activation_max)
{
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
{
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
{
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
++in_ch, out_ch += ch_mult)
{
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
{
int32_t out_buff32[4] = {REDUCE_MULTIPLIER(output_mult[out_ch + 0 + mult_tile]),
REDUCE_MULTIPLIER(output_mult[out_ch + 1 + mult_tile]),
REDUCE_MULTIPLIER(output_mult[out_ch + 2 + mult_tile]),
REDUCE_MULTIPLIER(output_mult[out_ch + 3 + mult_tile])};
int64_t out_buff[4] = {0, 0, 0, 0};
if (bias)
{
out_buff[0] = bias[out_ch + 0 + mult_tile];
out_buff[1] = bias[out_ch + 1 + mult_tile];
out_buff[2] = bias[out_ch + 2 + mult_tile];
out_buff[3] = bias[out_ch + 3 + mult_tile];
}
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
{
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
#pragma clang loop unroll(disable)
#endif
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
++ker_w, ker_idx += output_ch)
{
// TODO: Unroll of 4 with 64 bit accumulator will probably result in too much register
// spills. Try with unroll of 2 when enabling this.
int32_t in_val = input[in_idx + ker_w * input_ch];
out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
}
}
out_buff32[0] =
arm_nn_requantize_s64(out_buff[0], out_buff32[0], output_shift[out_ch + 0 + mult_tile]);
out_buff32[1] =
arm_nn_requantize_s64(out_buff[1], out_buff32[1], output_shift[out_ch + 1 + mult_tile]);
out_buff32[2] =
arm_nn_requantize_s64(out_buff[2], out_buff32[2], output_shift[out_ch + 2 + mult_tile]);
out_buff32[3] =
arm_nn_requantize_s64(out_buff[3], out_buff32[3], output_shift[out_ch + 3 + mult_tile]);
out_buff32[0] = MIN(MAX(out_buff32[0], output_activation_min), output_activation_max);
out_buff32[1] = MIN(MAX(out_buff32[1], output_activation_min), output_activation_max);
out_buff32[2] = MIN(MAX(out_buff32[2], output_activation_min), output_activation_max);
out_buff32[3] = MIN(MAX(out_buff32[3], output_activation_min), output_activation_max);
output[out_idx++] = (int16_t)out_buff32[0];
output[out_idx++] = (int16_t)out_buff32[1];
output[out_idx++] = (int16_t)out_buff32[2];
output[out_idx++] = (int16_t)out_buff32[3];
}
}
}
}
}
static void depthwise_conv_s16_generic_s16(const int16_t *input,
const uint16_t input_batches,
const uint16_t input_x,
const uint16_t input_y,
const uint16_t input_ch,
const int8_t *kernel,
const uint16_t ch_mult,
const uint16_t kernel_x,
const uint16_t kernel_y,
const uint16_t pad_x,
const uint16_t pad_y,
const uint16_t stride_x,
const uint16_t stride_y,
const int64_t *bias,
int16_t *output,
const int32_t *output_shift,
const int32_t *output_mult,
const uint16_t output_x,
const uint16_t output_y,
const int32_t output_activation_min,
const int32_t output_activation_max,
const uint16_t dilation_x,
const uint16_t dilation_y)
{
for (int i_batch = 0; i_batch < input_batches; i_batch++)
{
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
{
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
{
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
{
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
{
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[idx_out_ch]);
int64_t acc_0 = 0;
int ker_y_start;
int ker_x_start;
int ker_y_end;
int ker_x_end;
if (dilation_x > 1)
{
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
ker_x_start = MAX(0, start_x_max);
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
ker_x_end = MIN(kernel_x, end_min_x);
}
else
{
ker_x_start = MAX(0, -base_idx_x);
ker_x_end = MIN(kernel_x, input_x - base_idx_x);
}
if (dilation_y > 1)
{
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
ker_y_start = MAX(0, start_y_max);
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
ker_y_end = MIN(kernel_y, end_min_y);
}
else
{
ker_y_start = MAX(0, -base_idx_y);
ker_y_end = MIN(kernel_y, input_y - base_idx_y);
}
if (bias)
{
acc_0 = bias[idx_out_ch];
}
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
{
const int32_t idx_y = base_idx_y + dilation_y * i_ker_y;
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
{
const int32_t idx_x = base_idx_x + dilation_x * i_ker_x;
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
acc_0 += input[idx_0] * kernel[ker_idx_0];
}
}
/* Requantize and clamp output to provided range */
int32_t result = arm_nn_requantize_s64(acc_0, reduced_multiplier, output_shift[idx_out_ch]);
result = MAX(result, output_activation_min);
result = MIN(result, output_activation_max);
*output++ = (int16_t)result;
}
}
}
}
/* Advance to the next batch */
input += (input_x * input_y * input_ch);
}
}
/*
* Basic s16 depthwise convolution function.
*
* Refer header file for details.
*
*/
arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
const cmsis_nn_dw_conv_params *dw_conv_params,
const cmsis_nn_per_channel_quant_params *quant_params,
const cmsis_nn_dims *input_dims,
const q15_t *input,
const cmsis_nn_dims *filter_dims,
const q7_t *kernel,
const cmsis_nn_dims *bias_dims,
const int64_t *bias,
const cmsis_nn_dims *output_dims,
q15_t *output)
{
const uint16_t dilation_x = dw_conv_params->dilation.w;
const uint16_t dilation_y = dw_conv_params->dilation.h;
(void)bias_dims;
(void)ctx;
depthwise_conv_s16_generic_s16(input,
input_dims->n,
input_dims->w,
input_dims->h,
input_dims->c,
kernel,
dw_conv_params->ch_mult,
filter_dims->w,
filter_dims->h,
dw_conv_params->padding.w,
dw_conv_params->padding.h,
dw_conv_params->stride.w,
dw_conv_params->stride.h,
bias,
output,
quant_params->shift,
quant_params->multiplier,
output_dims->w,
output_dims->h,
dw_conv_params->activation.min,
dw_conv_params->activation.max,
dilation_x,
dilation_y);
/* Return to application */
return ARM_MATH_SUCCESS;
}
/**
* @} end of NNConv group
*/