293 lines
14 KiB
C
293 lines
14 KiB
C
|
/*
|
||
|
* Copyright (C) 2022 Arm Limited or its affiliates.
|
||
|
*
|
||
|
* SPDX-License-Identifier: Apache-2.0
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||
|
* not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
/* ----------------------------------------------------------------------
|
||
|
* Project: CMSIS NN Library
|
||
|
* Title: arm_depthwise_conv_s16.c
|
||
|
* Description: s16 version of depthwise convolution.
|
||
|
*
|
||
|
* $Date: 26. Jan 2022
|
||
|
* $Revision: V.1.0.0
|
||
|
*
|
||
|
* Target Processor: Cortex-M CPUs
|
||
|
*
|
||
|
* -------------------------------------------------------------------- */
|
||
|
|
||
|
#include "arm_nnfunctions.h"
|
||
|
#include "arm_nnsupportfunctions.h"
|
||
|
|
||
|
/**
|
||
|
* @ingroup groupNN
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @addtogroup NNConv
|
||
|
* @{
|
||
|
*/
|
||
|
|
||
|
static void __attribute__((unused)) depthwise_conv_s16_mult_4_s16(const int16_t *input,
|
||
|
const int32_t input_x,
|
||
|
const int32_t input_y,
|
||
|
const int32_t input_ch,
|
||
|
const int8_t *kernel,
|
||
|
const int32_t output_ch,
|
||
|
const int32_t ch_mult,
|
||
|
const int32_t kernel_x,
|
||
|
const int32_t kernel_y,
|
||
|
const int32_t pad_x,
|
||
|
const int32_t pad_y,
|
||
|
const int32_t stride_x,
|
||
|
const int32_t stride_y,
|
||
|
const int64_t *bias,
|
||
|
int16_t *output,
|
||
|
const int32_t *output_shift,
|
||
|
const int32_t *output_mult,
|
||
|
const int32_t output_x,
|
||
|
const int32_t output_y,
|
||
|
const int32_t output_activation_min,
|
||
|
const int32_t output_activation_max)
|
||
|
{
|
||
|
for (int32_t in_h = -pad_y, out_h = 0, out_idx = 0; out_h < output_y; in_h += stride_y, ++out_h)
|
||
|
{
|
||
|
for (int32_t in_w = -pad_x, out_w = 0, ker_h_start = MAX(0, -in_h); out_w < output_x; in_w += stride_x, ++out_w)
|
||
|
{
|
||
|
for (int32_t in_ch = 0, out_ch = 0, ker_w_start = MAX(0, -in_w); out_ch < output_ch;
|
||
|
++in_ch, out_ch += ch_mult)
|
||
|
{
|
||
|
for (int mult_tile = 0; mult_tile < ch_mult; mult_tile += 4)
|
||
|
{
|
||
|
int32_t out_buff32[4] = {REDUCE_MULTIPLIER(output_mult[out_ch + 0 + mult_tile]),
|
||
|
REDUCE_MULTIPLIER(output_mult[out_ch + 1 + mult_tile]),
|
||
|
REDUCE_MULTIPLIER(output_mult[out_ch + 2 + mult_tile]),
|
||
|
REDUCE_MULTIPLIER(output_mult[out_ch + 3 + mult_tile])};
|
||
|
|
||
|
int64_t out_buff[4] = {0, 0, 0, 0};
|
||
|
|
||
|
if (bias)
|
||
|
{
|
||
|
out_buff[0] = bias[out_ch + 0 + mult_tile];
|
||
|
out_buff[1] = bias[out_ch + 1 + mult_tile];
|
||
|
out_buff[2] = bias[out_ch + 2 + mult_tile];
|
||
|
out_buff[3] = bias[out_ch + 3 + mult_tile];
|
||
|
}
|
||
|
|
||
|
for (int32_t ker_h = ker_h_start; ker_h < MIN(kernel_y, input_y - in_h); ++ker_h)
|
||
|
{
|
||
|
int32_t ker_idx = ker_h * (output_ch * kernel_x) + ker_w_start * output_ch + out_ch;
|
||
|
int32_t in_idx = (in_h + ker_h) * (input_ch * input_x) + in_w * input_ch + in_ch;
|
||
|
#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
||
|
#pragma clang loop unroll(disable)
|
||
|
#endif
|
||
|
for (int32_t ker_w = ker_w_start; ker_w < MIN(kernel_x, input_x - in_w);
|
||
|
++ker_w, ker_idx += output_ch)
|
||
|
{
|
||
|
// TODO: Unroll of 4 with 64 bit accumulator will probably result in too much register
|
||
|
// spills. Try with unroll of 2 when enabling this.
|
||
|
int32_t in_val = input[in_idx + ker_w * input_ch];
|
||
|
out_buff[0] += in_val * kernel[ker_idx + 0 + mult_tile];
|
||
|
out_buff[1] += in_val * kernel[ker_idx + 1 + mult_tile];
|
||
|
out_buff[2] += in_val * kernel[ker_idx + 2 + mult_tile];
|
||
|
out_buff[3] += in_val * kernel[ker_idx + 3 + mult_tile];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
out_buff32[0] =
|
||
|
arm_nn_requantize_s64(out_buff[0], out_buff32[0], output_shift[out_ch + 0 + mult_tile]);
|
||
|
out_buff32[1] =
|
||
|
arm_nn_requantize_s64(out_buff[1], out_buff32[1], output_shift[out_ch + 1 + mult_tile]);
|
||
|
out_buff32[2] =
|
||
|
arm_nn_requantize_s64(out_buff[2], out_buff32[2], output_shift[out_ch + 2 + mult_tile]);
|
||
|
out_buff32[3] =
|
||
|
arm_nn_requantize_s64(out_buff[3], out_buff32[3], output_shift[out_ch + 3 + mult_tile]);
|
||
|
|
||
|
out_buff32[0] = MIN(MAX(out_buff32[0], output_activation_min), output_activation_max);
|
||
|
out_buff32[1] = MIN(MAX(out_buff32[1], output_activation_min), output_activation_max);
|
||
|
out_buff32[2] = MIN(MAX(out_buff32[2], output_activation_min), output_activation_max);
|
||
|
out_buff32[3] = MIN(MAX(out_buff32[3], output_activation_min), output_activation_max);
|
||
|
|
||
|
output[out_idx++] = (int16_t)out_buff32[0];
|
||
|
output[out_idx++] = (int16_t)out_buff32[1];
|
||
|
output[out_idx++] = (int16_t)out_buff32[2];
|
||
|
output[out_idx++] = (int16_t)out_buff32[3];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void depthwise_conv_s16_generic_s16(const int16_t *input,
|
||
|
const uint16_t input_batches,
|
||
|
const uint16_t input_x,
|
||
|
const uint16_t input_y,
|
||
|
const uint16_t input_ch,
|
||
|
const int8_t *kernel,
|
||
|
const uint16_t ch_mult,
|
||
|
const uint16_t kernel_x,
|
||
|
const uint16_t kernel_y,
|
||
|
const uint16_t pad_x,
|
||
|
const uint16_t pad_y,
|
||
|
const uint16_t stride_x,
|
||
|
const uint16_t stride_y,
|
||
|
const int64_t *bias,
|
||
|
int16_t *output,
|
||
|
const int32_t *output_shift,
|
||
|
const int32_t *output_mult,
|
||
|
const uint16_t output_x,
|
||
|
const uint16_t output_y,
|
||
|
const int32_t output_activation_min,
|
||
|
const int32_t output_activation_max,
|
||
|
const uint16_t dilation_x,
|
||
|
const uint16_t dilation_y)
|
||
|
|
||
|
{
|
||
|
for (int i_batch = 0; i_batch < input_batches; i_batch++)
|
||
|
{
|
||
|
for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
|
||
|
{
|
||
|
const int16_t base_idx_y = (i_out_y * stride_y) - pad_y;
|
||
|
for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
|
||
|
{
|
||
|
const int16_t base_idx_x = (i_out_x * stride_x) - pad_x;
|
||
|
for (int i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
|
||
|
{
|
||
|
for (int i_ch_mult = 0; i_ch_mult < ch_mult; i_ch_mult++)
|
||
|
{
|
||
|
const int idx_out_ch = i_ch_mult + i_input_ch * ch_mult;
|
||
|
|
||
|
const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[idx_out_ch]);
|
||
|
int64_t acc_0 = 0;
|
||
|
|
||
|
int ker_y_start;
|
||
|
int ker_x_start;
|
||
|
int ker_y_end;
|
||
|
int ker_x_end;
|
||
|
|
||
|
if (dilation_x > 1)
|
||
|
{
|
||
|
const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
|
||
|
ker_x_start = MAX(0, start_x_max);
|
||
|
const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
|
||
|
ker_x_end = MIN(kernel_x, end_min_x);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ker_x_start = MAX(0, -base_idx_x);
|
||
|
ker_x_end = MIN(kernel_x, input_x - base_idx_x);
|
||
|
}
|
||
|
|
||
|
if (dilation_y > 1)
|
||
|
{
|
||
|
const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
|
||
|
ker_y_start = MAX(0, start_y_max);
|
||
|
const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
|
||
|
ker_y_end = MIN(kernel_y, end_min_y);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ker_y_start = MAX(0, -base_idx_y);
|
||
|
ker_y_end = MIN(kernel_y, input_y - base_idx_y);
|
||
|
}
|
||
|
|
||
|
if (bias)
|
||
|
{
|
||
|
acc_0 = bias[idx_out_ch];
|
||
|
}
|
||
|
|
||
|
for (int i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
|
||
|
{
|
||
|
const int32_t idx_y = base_idx_y + dilation_y * i_ker_y;
|
||
|
for (int i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
|
||
|
{
|
||
|
const int32_t idx_x = base_idx_x + dilation_x * i_ker_x;
|
||
|
int32_t idx_0 = (idx_y * input_x + idx_x) * input_ch + i_input_ch;
|
||
|
int32_t ker_idx_0 = (i_ker_y * kernel_x + i_ker_x) * (input_ch * ch_mult) + idx_out_ch;
|
||
|
|
||
|
acc_0 += input[idx_0] * kernel[ker_idx_0];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Requantize and clamp output to provided range */
|
||
|
int32_t result = arm_nn_requantize_s64(acc_0, reduced_multiplier, output_shift[idx_out_ch]);
|
||
|
result = MAX(result, output_activation_min);
|
||
|
result = MIN(result, output_activation_max);
|
||
|
*output++ = (int16_t)result;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* Advance to the next batch */
|
||
|
input += (input_x * input_y * input_ch);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Basic s16 depthwise convolution function.
|
||
|
*
|
||
|
* Refer header file for details.
|
||
|
*
|
||
|
*/
|
||
|
arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
|
||
|
const cmsis_nn_dw_conv_params *dw_conv_params,
|
||
|
const cmsis_nn_per_channel_quant_params *quant_params,
|
||
|
const cmsis_nn_dims *input_dims,
|
||
|
const q15_t *input,
|
||
|
const cmsis_nn_dims *filter_dims,
|
||
|
const q7_t *kernel,
|
||
|
const cmsis_nn_dims *bias_dims,
|
||
|
const int64_t *bias,
|
||
|
const cmsis_nn_dims *output_dims,
|
||
|
q15_t *output)
|
||
|
{
|
||
|
const uint16_t dilation_x = dw_conv_params->dilation.w;
|
||
|
const uint16_t dilation_y = dw_conv_params->dilation.h;
|
||
|
|
||
|
(void)bias_dims;
|
||
|
(void)ctx;
|
||
|
|
||
|
depthwise_conv_s16_generic_s16(input,
|
||
|
input_dims->n,
|
||
|
input_dims->w,
|
||
|
input_dims->h,
|
||
|
input_dims->c,
|
||
|
kernel,
|
||
|
dw_conv_params->ch_mult,
|
||
|
filter_dims->w,
|
||
|
filter_dims->h,
|
||
|
dw_conv_params->padding.w,
|
||
|
dw_conv_params->padding.h,
|
||
|
dw_conv_params->stride.w,
|
||
|
dw_conv_params->stride.h,
|
||
|
bias,
|
||
|
output,
|
||
|
quant_params->shift,
|
||
|
quant_params->multiplier,
|
||
|
output_dims->w,
|
||
|
output_dims->h,
|
||
|
dw_conv_params->activation.min,
|
||
|
dw_conv_params->activation.max,
|
||
|
dilation_x,
|
||
|
dilation_y);
|
||
|
|
||
|
/* Return to application */
|
||
|
return ARM_MATH_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @} end of NNConv group
|
||
|
*/
|