stm32f407-openocd/Drivers/CMSIS/DAP/Firmware/Source/DAP.c

1813 lines
52 KiB
C
Raw Permalink Normal View History

2024-06-12 08:32:58 +00:00
/*
* Copyright (c) 2013-2022 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* ----------------------------------------------------------------------
*
* $Date: 26. April 2022
* $Revision: V2.1.1
*
* Project: CMSIS-DAP Source
* Title: DAP.c CMSIS-DAP Commands
*
*---------------------------------------------------------------------------*/
#include <string.h>
#include "DAP_config.h"
#include "DAP.h"
#if (DAP_PACKET_SIZE < 64U)
#error "Minimum Packet Size is 64!"
#endif
#if (DAP_PACKET_SIZE > 32768U)
#error "Maximum Packet Size is 32768!"
#endif
#if (DAP_PACKET_COUNT < 1U)
#error "Minimum Packet Count is 1!"
#endif
#if (DAP_PACKET_COUNT > 255U)
#error "Maximum Packet Count is 255!"
#endif
// Clock Macros
#define MAX_SWJ_CLOCK(delay_cycles) \
((CPU_CLOCK/2U) / (IO_PORT_WRITE_CYCLES + delay_cycles))
DAP_Data_t DAP_Data; // DAP Data
volatile uint8_t DAP_TransferAbort; // Transfer Abort Flag
static const char DAP_FW_Ver [] = DAP_FW_VER;
// Common clock delay calculation routine
// clock: requested SWJ frequency in Hertz
static void Set_Clock_Delay(uint32_t clock) {
uint32_t delay;
if (clock >= MAX_SWJ_CLOCK(DELAY_FAST_CYCLES)) {
DAP_Data.fast_clock = 1U;
DAP_Data.clock_delay = 1U;
} else {
DAP_Data.fast_clock = 0U;
delay = ((CPU_CLOCK/2U) + (clock - 1U)) / clock;
if (delay > IO_PORT_WRITE_CYCLES) {
delay -= IO_PORT_WRITE_CYCLES;
delay = (delay + (DELAY_SLOW_CYCLES - 1U)) / DELAY_SLOW_CYCLES;
} else {
delay = 1U;
}
DAP_Data.clock_delay = delay;
}
}
// Get DAP Information
// id: info identifier
// info: pointer to info data
// return: number of bytes in info data
static uint8_t DAP_Info(uint8_t id, uint8_t *info) {
uint8_t length = 0U;
switch (id) {
case DAP_ID_VENDOR:
length = DAP_GetVendorString((char *)info);
break;
case DAP_ID_PRODUCT:
length = DAP_GetProductString((char *)info);
break;
case DAP_ID_SER_NUM:
length = DAP_GetSerNumString((char *)info);
break;
case DAP_ID_DAP_FW_VER:
length = (uint8_t)sizeof(DAP_FW_Ver);
memcpy(info, DAP_FW_Ver, length);
break;
case DAP_ID_DEVICE_VENDOR:
length = DAP_GetTargetDeviceVendorString((char *)info);
break;
case DAP_ID_DEVICE_NAME:
length = DAP_GetTargetDeviceNameString((char *)info);
break;
case DAP_ID_BOARD_VENDOR:
length = DAP_GetTargetBoardVendorString((char *)info);
break;
case DAP_ID_BOARD_NAME:
length = DAP_GetTargetBoardNameString((char *)info);
break;
case DAP_ID_PRODUCT_FW_VER:
length = DAP_GetProductFirmwareVersionString((char *)info);
break;
case DAP_ID_CAPABILITIES:
info[0] = ((DAP_SWD != 0) ? (1U << 0) : 0U) |
((DAP_JTAG != 0) ? (1U << 1) : 0U) |
((SWO_UART != 0) ? (1U << 2) : 0U) |
((SWO_MANCHESTER != 0) ? (1U << 3) : 0U) |
/* Atomic Commands */ (1U << 4) |
((TIMESTAMP_CLOCK != 0U) ? (1U << 5) : 0U) |
((SWO_STREAM != 0U) ? (1U << 6) : 0U) |
((DAP_UART != 0U) ? (1U << 7) : 0U);
info[1] = ((DAP_UART_USB_COM_PORT != 0) ? (1U << 0) : 0U);
length = 2U;
break;
case DAP_ID_TIMESTAMP_CLOCK:
#if (TIMESTAMP_CLOCK != 0U)
info[0] = (uint8_t)(TIMESTAMP_CLOCK >> 0);
info[1] = (uint8_t)(TIMESTAMP_CLOCK >> 8);
info[2] = (uint8_t)(TIMESTAMP_CLOCK >> 16);
info[3] = (uint8_t)(TIMESTAMP_CLOCK >> 24);
length = 4U;
#endif
break;
case DAP_ID_UART_RX_BUFFER_SIZE:
#if (DAP_UART != 0)
info[0] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 0);
info[1] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 8);
info[2] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 16);
info[3] = (uint8_t)(DAP_UART_RX_BUFFER_SIZE >> 24);
length = 4U;
#endif
break;
case DAP_ID_UART_TX_BUFFER_SIZE:
#if (DAP_UART != 0)
info[0] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 0);
info[1] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 8);
info[2] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 16);
info[3] = (uint8_t)(DAP_UART_TX_BUFFER_SIZE >> 24);
length = 4U;
#endif
break;
case DAP_ID_SWO_BUFFER_SIZE:
#if ((SWO_UART != 0) || (SWO_MANCHESTER != 0))
info[0] = (uint8_t)(SWO_BUFFER_SIZE >> 0);
info[1] = (uint8_t)(SWO_BUFFER_SIZE >> 8);
info[2] = (uint8_t)(SWO_BUFFER_SIZE >> 16);
info[3] = (uint8_t)(SWO_BUFFER_SIZE >> 24);
length = 4U;
#endif
break;
case DAP_ID_PACKET_SIZE:
info[0] = (uint8_t)(DAP_PACKET_SIZE >> 0);
info[1] = (uint8_t)(DAP_PACKET_SIZE >> 8);
length = 2U;
break;
case DAP_ID_PACKET_COUNT:
info[0] = DAP_PACKET_COUNT;
length = 1U;
break;
default:
break;
}
return (length);
}
// Delay for specified time
// delay: delay time in ms
void Delayms(uint32_t delay) {
delay *= ((CPU_CLOCK/1000U) + (DELAY_SLOW_CYCLES-1U)) / DELAY_SLOW_CYCLES;
PIN_DELAY_SLOW(delay);
}
// Process Delay command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_Delay(const uint8_t *request, uint8_t *response) {
uint32_t delay;
delay = (uint32_t)(*(request+0)) |
(uint32_t)(*(request+1) << 8);
delay *= ((CPU_CLOCK/1000000U) + (DELAY_SLOW_CYCLES-1U)) / DELAY_SLOW_CYCLES;
PIN_DELAY_SLOW(delay);
*response = DAP_OK;
return ((2U << 16) | 1U);
}
// Process Host Status command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_HostStatus(const uint8_t *request, uint8_t *response) {
switch (*request) {
case DAP_DEBUGGER_CONNECTED:
LED_CONNECTED_OUT((*(request+1) & 1U));
break;
case DAP_TARGET_RUNNING:
LED_RUNNING_OUT((*(request+1) & 1U));
break;
default:
*response = DAP_ERROR;
return ((2U << 16) | 1U);
}
*response = DAP_OK;
return ((2U << 16) | 1U);
}
// Process Connect command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_Connect(const uint8_t *request, uint8_t *response) {
uint32_t port;
if (*request == DAP_PORT_AUTODETECT) {
port = DAP_DEFAULT_PORT;
} else {
port = *request;
}
switch (port) {
#if (DAP_SWD != 0)
case DAP_PORT_SWD:
DAP_Data.debug_port = DAP_PORT_SWD;
PORT_SWD_SETUP();
break;
#endif
#if (DAP_JTAG != 0)
case DAP_PORT_JTAG:
DAP_Data.debug_port = DAP_PORT_JTAG;
PORT_JTAG_SETUP();
break;
#endif
default:
port = DAP_PORT_DISABLED;
break;
}
*response = (uint8_t)port;
return ((1U << 16) | 1U);
}
// Process Disconnect command and prepare response
// response: pointer to response data
// return: number of bytes in response
static uint32_t DAP_Disconnect(uint8_t *response) {
DAP_Data.debug_port = DAP_PORT_DISABLED;
PORT_OFF();
*response = DAP_OK;
return (1U);
}
// Process Reset Target command and prepare response
// response: pointer to response data
// return: number of bytes in response
static uint32_t DAP_ResetTarget(uint8_t *response) {
*(response+1) = RESET_TARGET();
*(response+0) = DAP_OK;
return (2U);
}
// Process SWJ Pins command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_SWJ_Pins(const uint8_t *request, uint8_t *response) {
#if ((DAP_SWD != 0) || (DAP_JTAG != 0))
uint32_t value;
uint32_t select;
uint32_t wait;
uint32_t timestamp;
value = (uint32_t) *(request+0);
select = (uint32_t) *(request+1);
wait = (uint32_t)(*(request+2) << 0) |
(uint32_t)(*(request+3) << 8) |
(uint32_t)(*(request+4) << 16) |
(uint32_t)(*(request+5) << 24);
if ((select & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) {
if ((value & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) {
PIN_SWCLK_TCK_SET();
} else {
PIN_SWCLK_TCK_CLR();
}
}
if ((select & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) {
if ((value & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) {
PIN_SWDIO_TMS_SET();
} else {
PIN_SWDIO_TMS_CLR();
}
}
if ((select & (1U << DAP_SWJ_TDI)) != 0U) {
PIN_TDI_OUT(value >> DAP_SWJ_TDI);
}
if ((select & (1U << DAP_SWJ_nTRST)) != 0U) {
PIN_nTRST_OUT(value >> DAP_SWJ_nTRST);
}
if ((select & (1U << DAP_SWJ_nRESET)) != 0U){
PIN_nRESET_OUT(value >> DAP_SWJ_nRESET);
}
if (wait != 0U) {
#if (TIMESTAMP_CLOCK != 0U)
if (wait > 3000000U) {
wait = 3000000U;
}
#if (TIMESTAMP_CLOCK >= 1000000U)
wait *= TIMESTAMP_CLOCK / 1000000U;
#else
wait /= 1000000U / TIMESTAMP_CLOCK;
#endif
#else
wait = 1U;
#endif
timestamp = TIMESTAMP_GET();
do {
if ((select & (1U << DAP_SWJ_SWCLK_TCK)) != 0U) {
if ((value >> DAP_SWJ_SWCLK_TCK) ^ PIN_SWCLK_TCK_IN()) {
continue;
}
}
if ((select & (1U << DAP_SWJ_SWDIO_TMS)) != 0U) {
if ((value >> DAP_SWJ_SWDIO_TMS) ^ PIN_SWDIO_TMS_IN()) {
continue;
}
}
if ((select & (1U << DAP_SWJ_TDI)) != 0U) {
if ((value >> DAP_SWJ_TDI) ^ PIN_TDI_IN()) {
continue;
}
}
if ((select & (1U << DAP_SWJ_nTRST)) != 0U) {
if ((value >> DAP_SWJ_nTRST) ^ PIN_nTRST_IN()) {
continue;
}
}
if ((select & (1U << DAP_SWJ_nRESET)) != 0U) {
if ((value >> DAP_SWJ_nRESET) ^ PIN_nRESET_IN()) {
continue;
}
}
break;
} while ((TIMESTAMP_GET() - timestamp) < wait);
}
value = (PIN_SWCLK_TCK_IN() << DAP_SWJ_SWCLK_TCK) |
(PIN_SWDIO_TMS_IN() << DAP_SWJ_SWDIO_TMS) |
(PIN_TDI_IN() << DAP_SWJ_TDI) |
(PIN_TDO_IN() << DAP_SWJ_TDO) |
(PIN_nTRST_IN() << DAP_SWJ_nTRST) |
(PIN_nRESET_IN() << DAP_SWJ_nRESET);
*response = (uint8_t)value;
#else
*response = 0U;
#endif
return ((6U << 16) | 1U);
}
// Process SWJ Clock command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_SWJ_Clock(const uint8_t *request, uint8_t *response) {
#if ((DAP_SWD != 0) || (DAP_JTAG != 0))
uint32_t clock;
uint32_t delay;
clock = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
if (clock == 0U) {
*response = DAP_ERROR;
return ((4U << 16) | 1U);
}
Set_Clock_Delay(clock);
*response = DAP_OK;
#else
*response = DAP_ERROR;
#endif
return ((4U << 16) | 1U);
}
// Process SWJ Sequence command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_SWJ_Sequence(const uint8_t *request, uint8_t *response) {
uint32_t count;
count = *request++;
if (count == 0U) {
count = 256U;
}
#if ((DAP_SWD != 0) || (DAP_JTAG != 0))
SWJ_Sequence(count, request);
*response = DAP_OK;
#else
*response = DAP_ERROR;
#endif
count = (count + 7U) >> 3;
return (((count + 1U) << 16) | 1U);
}
// Process SWD Configure command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_SWD_Configure(const uint8_t *request, uint8_t *response) {
#if (DAP_SWD != 0)
uint8_t value;
value = *request;
DAP_Data.swd_conf.turnaround = (value & 0x03U) + 1U;
DAP_Data.swd_conf.data_phase = (value & 0x04U) ? 1U : 0U;
*response = DAP_OK;
#else
*response = DAP_ERROR;
#endif
return ((1U << 16) | 1U);
}
// Process SWD Sequence command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_SWD_Sequence(const uint8_t *request, uint8_t *response) {
uint32_t sequence_info;
uint32_t sequence_count;
uint32_t request_count;
uint32_t response_count;
uint32_t count;
#if (DAP_SWD != 0)
*response++ = DAP_OK;
#else
*response++ = DAP_ERROR;
#endif
request_count = 1U;
response_count = 1U;
sequence_count = *request++;
while (sequence_count--) {
sequence_info = *request++;
count = sequence_info & SWD_SEQUENCE_CLK;
if (count == 0U) {
count = 64U;
}
count = (count + 7U) / 8U;
#if (DAP_SWD != 0)
if ((sequence_info & SWD_SEQUENCE_DIN) != 0U) {
PIN_SWDIO_OUT_DISABLE();
} else {
PIN_SWDIO_OUT_ENABLE();
}
SWD_Sequence(sequence_info, request, response);
if (sequence_count == 0U) {
PIN_SWDIO_OUT_ENABLE();
}
#endif
if ((sequence_info & SWD_SEQUENCE_DIN) != 0U) {
request_count++;
#if (DAP_SWD != 0)
response += count;
response_count += count;
#endif
} else {
request += count;
request_count += count + 1U;
}
}
return ((request_count << 16) | response_count);
}
// Process JTAG Sequence command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_JTAG_Sequence(const uint8_t *request, uint8_t *response) {
uint32_t sequence_info;
uint32_t sequence_count;
uint32_t request_count;
uint32_t response_count;
uint32_t count;
#if (DAP_JTAG != 0)
*response++ = DAP_OK;
#else
*response++ = DAP_ERROR;
#endif
request_count = 1U;
response_count = 1U;
sequence_count = *request++;
while (sequence_count--) {
sequence_info = *request++;
count = sequence_info & JTAG_SEQUENCE_TCK;
if (count == 0U) {
count = 64U;
}
count = (count + 7U) / 8U;
#if (DAP_JTAG != 0)
JTAG_Sequence(sequence_info, request, response);
#endif
request += count;
request_count += count + 1U;
#if (DAP_JTAG != 0)
if ((sequence_info & JTAG_SEQUENCE_TDO) != 0U) {
response += count;
response_count += count;
}
#endif
}
return ((request_count << 16) | response_count);
}
// Process JTAG Configure command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_JTAG_Configure(const uint8_t *request, uint8_t *response) {
uint32_t count;
#if (DAP_JTAG != 0)
uint32_t length;
uint32_t bits;
uint32_t n;
count = *request++;
DAP_Data.jtag_dev.count = (uint8_t)count;
bits = 0U;
for (n = 0U; n < count; n++) {
length = *request++;
DAP_Data.jtag_dev.ir_length[n] = (uint8_t)length;
DAP_Data.jtag_dev.ir_before[n] = (uint16_t)bits;
bits += length;
}
for (n = 0U; n < count; n++) {
bits -= DAP_Data.jtag_dev.ir_length[n];
DAP_Data.jtag_dev.ir_after[n] = (uint16_t)bits;
}
*response = DAP_OK;
#else
count = *request;
*response = DAP_ERROR;
#endif
return (((count + 1U) << 16) | 1U);
}
// Process JTAG IDCODE command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_JTAG_IDCode(const uint8_t *request, uint8_t *response) {
#if (DAP_JTAG != 0)
uint32_t data;
if (DAP_Data.debug_port != DAP_PORT_JTAG) {
goto id_error;
}
// Device index (JTAP TAP)
DAP_Data.jtag_dev.index = *request;
if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) {
goto id_error;
}
// Select JTAG chain
JTAG_IR(JTAG_IDCODE);
// Read IDCODE register
data = JTAG_ReadIDCode();
// Store Data
*(response+0) = DAP_OK;
*(response+1) = (uint8_t)(data >> 0);
*(response+2) = (uint8_t)(data >> 8);
*(response+3) = (uint8_t)(data >> 16);
*(response+4) = (uint8_t)(data >> 24);
return ((1U << 16) | 5U);
id_error:
#endif
*response = DAP_ERROR;
return ((1U << 16) | 1U);
}
// Process Transfer Configure command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_TransferConfigure(const uint8_t *request, uint8_t *response) {
DAP_Data.transfer.idle_cycles = *(request+0);
DAP_Data.transfer.retry_count = (uint16_t) *(request+1) |
(uint16_t)(*(request+2) << 8);
DAP_Data.transfer.match_retry = (uint16_t) *(request+3) |
(uint16_t)(*(request+4) << 8);
*response = DAP_OK;
return ((5U << 16) | 1U);
}
// Process SWD Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
#if (DAP_SWD != 0)
static uint32_t DAP_SWD_Transfer(const uint8_t *request, uint8_t *response) {
const
uint8_t *request_head;
uint32_t request_count;
uint32_t request_value;
uint8_t *response_head;
uint32_t response_count;
uint32_t response_value;
uint32_t post_read;
uint32_t check_write;
uint32_t match_value;
uint32_t match_retry;
uint32_t retry;
uint32_t data;
#if (TIMESTAMP_CLOCK != 0U)
uint32_t timestamp;
#endif
request_head = request;
response_count = 0U;
response_value = 0U;
response_head = response;
response += 2;
DAP_TransferAbort = 0U;
post_read = 0U;
check_write = 0U;
request++; // Ignore DAP index
request_count = *request++;
for (; request_count != 0U; request_count--) {
request_value = *request++;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register
if (post_read) {
// Read was posted before
retry = DAP_Data.transfer.retry_count;
if ((request_value & (DAP_TRANSFER_APnDP | DAP_TRANSFER_MATCH_VALUE)) == DAP_TRANSFER_APnDP) {
// Read previous AP data and post next AP read
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
} else {
// Read previous AP data
do {
response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
post_read = 0U;
}
if (response_value != DAP_TRANSFER_OK) {
break;
}
// Store previous AP data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
#if (TIMESTAMP_CLOCK != 0U)
if (post_read) {
// Store Timestamp of next AP read
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
}
#endif
}
if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) {
// Read with value match
match_value = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
match_retry = DAP_Data.transfer.match_retry;
if ((request_value & DAP_TRANSFER_APnDP) != 0U) {
// Post AP read
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
}
do {
// Read register until its value matches or retry counter expires
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
} while (((data & DAP_Data.transfer.match_mask) != match_value) && match_retry-- && !DAP_TransferAbort);
if ((data & DAP_Data.transfer.match_mask) != match_value) {
response_value |= DAP_TRANSFER_MISMATCH;
}
if (response_value != DAP_TRANSFER_OK) {
break;
}
} else {
// Normal read
retry = DAP_Data.transfer.retry_count;
if ((request_value & DAP_TRANSFER_APnDP) != 0U) {
// Read AP register
if (post_read == 0U) {
// Post AP read
do {
response_value = SWD_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
#if (TIMESTAMP_CLOCK != 0U)
// Store Timestamp
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
#endif
post_read = 1U;
}
} else {
// Read DP register
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
#if (TIMESTAMP_CLOCK != 0U)
// Store Timestamp
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
#endif
// Store data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
}
}
check_write = 0U;
} else {
// Write register
if (post_read) {
// Read previous data
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
// Store previous data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
post_read = 0U;
}
// Load data
data = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
if ((request_value & DAP_TRANSFER_MATCH_MASK) != 0U) {
// Write match mask
DAP_Data.transfer.match_mask = data;
response_value = DAP_TRANSFER_OK;
} else {
// Write DP/AP register
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
#if (TIMESTAMP_CLOCK != 0U)
// Store Timestamp
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
#endif
check_write = 1U;
}
}
response_count++;
if (DAP_TransferAbort) {
break;
}
}
for (; request_count != 0U; request_count--) {
// Process canceled requests
request_value = *request++;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register
if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) {
// Read with value match
request += 4;
}
} else {
// Write register
request += 4;
}
}
if (response_value == DAP_TRANSFER_OK) {
if (post_read) {
// Read previous data
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
// Store previous data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
} else if (check_write) {
// Check last write
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
}
}
end:
*(response_head+0) = (uint8_t)response_count;
*(response_head+1) = (uint8_t)response_value;
return (((uint32_t)(request - request_head) << 16) | (uint32_t)(response - response_head));
}
#endif
// Process JTAG Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
#if (DAP_JTAG != 0)
static uint32_t DAP_JTAG_Transfer(const uint8_t *request, uint8_t *response) {
const
uint8_t *request_head;
uint32_t request_count;
uint32_t request_value;
uint32_t request_ir;
uint8_t *response_head;
uint32_t response_count;
uint32_t response_value;
uint32_t post_read;
uint32_t match_value;
uint32_t match_retry;
uint32_t retry;
uint32_t data;
uint32_t ir;
#if (TIMESTAMP_CLOCK != 0U)
uint32_t timestamp;
#endif
request_head = request;
response_count = 0U;
response_value = 0U;
response_head = response;
response += 2;
DAP_TransferAbort = 0U;
ir = 0U;
post_read = 0U;
// Device index (JTAP TAP)
DAP_Data.jtag_dev.index = *request++;
if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) {
goto end;
}
request_count = *request++;
for (; request_count != 0U; request_count--) {
request_value = *request++;
request_ir = (request_value & DAP_TRANSFER_APnDP) ? JTAG_APACC : JTAG_DPACC;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register
if (post_read) {
// Read was posted before
retry = DAP_Data.transfer.retry_count;
if ((ir == request_ir) && ((request_value & DAP_TRANSFER_MATCH_VALUE) == 0U)) {
// Read previous data and post next read
do {
response_value = JTAG_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
} else {
// Select JTAG chain
if (ir != JTAG_DPACC) {
ir = JTAG_DPACC;
JTAG_IR(ir);
}
// Read previous data
do {
response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
post_read = 0U;
}
if (response_value != DAP_TRANSFER_OK) {
break;
}
// Store previous data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
#if (TIMESTAMP_CLOCK != 0U)
if (post_read) {
// Store Timestamp of next AP read
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
}
#endif
}
if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) {
// Read with value match
match_value = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
match_retry = DAP_Data.transfer.match_retry;
// Select JTAG chain
if (ir != request_ir) {
ir = request_ir;
JTAG_IR(ir);
}
// Post DP/AP read
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
do {
// Read register until its value matches or retry counter expires
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
} while (((data & DAP_Data.transfer.match_mask) != match_value) && match_retry-- && !DAP_TransferAbort);
if ((data & DAP_Data.transfer.match_mask) != match_value) {
response_value |= DAP_TRANSFER_MISMATCH;
}
if (response_value != DAP_TRANSFER_OK) {
break;
}
} else {
// Normal read
if (post_read == 0U) {
// Select JTAG chain
if (ir != request_ir) {
ir = request_ir;
JTAG_IR(ir);
}
// Post DP/AP read
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
#if (TIMESTAMP_CLOCK != 0U)
// Store Timestamp
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
#endif
post_read = 1U;
}
}
} else {
// Write register
if (post_read) {
// Select JTAG chain
if (ir != JTAG_DPACC) {
ir = JTAG_DPACC;
JTAG_IR(ir);
}
// Read previous data
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
// Store previous data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
post_read = 0U;
}
// Load data
data = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
if ((request_value & DAP_TRANSFER_MATCH_MASK) != 0U) {
// Write match mask
DAP_Data.transfer.match_mask = data;
response_value = DAP_TRANSFER_OK;
} else {
// Select JTAG chain
if (ir != request_ir) {
ir = request_ir;
JTAG_IR(ir);
}
// Write DP/AP register
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
break;
}
#if (TIMESTAMP_CLOCK != 0U)
// Store Timestamp
if ((request_value & DAP_TRANSFER_TIMESTAMP) != 0U) {
timestamp = DAP_Data.timestamp;
*response++ = (uint8_t) timestamp;
*response++ = (uint8_t)(timestamp >> 8);
*response++ = (uint8_t)(timestamp >> 16);
*response++ = (uint8_t)(timestamp >> 24);
}
#endif
}
}
response_count++;
if (DAP_TransferAbort) {
break;
}
}
for (; request_count != 0U; request_count--) {
// Process canceled requests
request_value = *request++;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register
if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) {
// Read with value match
request += 4;
}
} else {
// Write register
request += 4;
}
}
if (response_value == DAP_TRANSFER_OK) {
// Select JTAG chain
if (ir != JTAG_DPACC) {
ir = JTAG_DPACC;
JTAG_IR(ir);
}
if (post_read) {
// Read previous data
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
// Store previous data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
} else {
// Check last write
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
}
}
end:
*(response_head+0) = (uint8_t)response_count;
*(response_head+1) = (uint8_t)response_value;
return (((uint32_t)(request - request_head) << 16) | (uint32_t)(response - response_head));
}
#endif
// Process Dummy Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_Dummy_Transfer(const uint8_t *request, uint8_t *response) {
const
uint8_t *request_head;
uint32_t request_count;
uint32_t request_value;
request_head = request;
request++; // Ignore DAP index
request_count = *request++;
for (; request_count != 0U; request_count--) {
// Process dummy requests
request_value = *request++;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register
if ((request_value & DAP_TRANSFER_MATCH_VALUE) != 0U) {
// Read with value match
request += 4;
}
} else {
// Write register
request += 4;
}
}
*(response+0) = 0U; // Response count
*(response+1) = 0U; // Response value
return (((uint32_t)(request - request_head) << 16) | 2U);
}
// Process Transfer command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_Transfer(const uint8_t *request, uint8_t *response) {
uint32_t num;
switch (DAP_Data.debug_port) {
#if (DAP_SWD != 0)
case DAP_PORT_SWD:
num = DAP_SWD_Transfer(request, response);
break;
#endif
#if (DAP_JTAG != 0)
case DAP_PORT_JTAG:
num = DAP_JTAG_Transfer(request, response);
break;
#endif
default:
num = DAP_Dummy_Transfer(request, response);
break;
}
return (num);
}
// Process SWD Transfer Block command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response
#if (DAP_SWD != 0)
static uint32_t DAP_SWD_TransferBlock(const uint8_t *request, uint8_t *response) {
uint32_t request_count;
uint32_t request_value;
uint32_t response_count;
uint32_t response_value;
uint8_t *response_head;
uint32_t retry;
uint32_t data;
response_count = 0U;
response_value = 0U;
response_head = response;
response += 3;
DAP_TransferAbort = 0U;
request++; // Ignore DAP index
request_count = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8);
request += 2;
if (request_count == 0U) {
goto end;
}
request_value = *request++;
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Read register block
if ((request_value & DAP_TRANSFER_APnDP) != 0U) {
// Post AP read
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
}
while (request_count--) {
// Read DP/AP register
if ((request_count == 0U) && ((request_value & DAP_TRANSFER_APnDP) != 0U)) {
// Last AP read
request_value = DP_RDBUFF | DAP_TRANSFER_RnW;
}
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
// Store data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
response_count++;
}
} else {
// Write register block
while (request_count--) {
// Load data
data = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
// Write DP/AP register
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
response_count++;
}
// Check last write
retry = DAP_Data.transfer.retry_count;
do {
response_value = SWD_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
}
end:
*(response_head+0) = (uint8_t)(response_count >> 0);
*(response_head+1) = (uint8_t)(response_count >> 8);
*(response_head+2) = (uint8_t) response_value;
return ((uint32_t)(response - response_head));
}
#endif
// Process JTAG Transfer Block command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response
#if (DAP_JTAG != 0)
static uint32_t DAP_JTAG_TransferBlock(const uint8_t *request, uint8_t *response) {
uint32_t request_count;
uint32_t request_value;
uint32_t response_count;
uint32_t response_value;
uint8_t *response_head;
uint32_t retry;
uint32_t data;
uint32_t ir;
response_count = 0U;
response_value = 0U;
response_head = response;
response += 3;
DAP_TransferAbort = 0U;
// Device index (JTAP TAP)
DAP_Data.jtag_dev.index = *request++;
if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) {
goto end;
}
request_count = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8);
request += 2;
if (request_count == 0U) {
goto end;
}
request_value = *request++;
// Select JTAG chain
ir = (request_value & DAP_TRANSFER_APnDP) ? JTAG_APACC : JTAG_DPACC;
JTAG_IR(ir);
if ((request_value & DAP_TRANSFER_RnW) != 0U) {
// Post read
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
// Read register block
while (request_count--) {
// Read DP/AP register
if (request_count == 0U) {
// Last read
if (ir != JTAG_DPACC) {
JTAG_IR(JTAG_DPACC);
}
request_value = DP_RDBUFF | DAP_TRANSFER_RnW;
}
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
// Store data
*response++ = (uint8_t) data;
*response++ = (uint8_t)(data >> 8);
*response++ = (uint8_t)(data >> 16);
*response++ = (uint8_t)(data >> 24);
response_count++;
}
} else {
// Write register block
while (request_count--) {
// Load data
data = (uint32_t)(*(request+0) << 0) |
(uint32_t)(*(request+1) << 8) |
(uint32_t)(*(request+2) << 16) |
(uint32_t)(*(request+3) << 24);
request += 4;
// Write DP/AP register
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(request_value, &data);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
if (response_value != DAP_TRANSFER_OK) {
goto end;
}
response_count++;
}
// Check last write
if (ir != JTAG_DPACC) {
JTAG_IR(JTAG_DPACC);
}
retry = DAP_Data.transfer.retry_count;
do {
response_value = JTAG_Transfer(DP_RDBUFF | DAP_TRANSFER_RnW, NULL);
} while ((response_value == DAP_TRANSFER_WAIT) && retry-- && !DAP_TransferAbort);
}
end:
*(response_head+0) = (uint8_t)(response_count >> 0);
*(response_head+1) = (uint8_t)(response_count >> 8);
*(response_head+2) = (uint8_t) response_value;
return ((uint32_t)(response - response_head));
}
#endif
// Process Transfer Block command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_TransferBlock(const uint8_t *request, uint8_t *response) {
uint32_t num;
switch (DAP_Data.debug_port) {
#if (DAP_SWD != 0)
case DAP_PORT_SWD:
num = DAP_SWD_TransferBlock (request, response);
break;
#endif
#if (DAP_JTAG != 0)
case DAP_PORT_JTAG:
num = DAP_JTAG_TransferBlock(request, response);
break;
#endif
default:
*(response+0) = 0U; // Response count [7:0]
*(response+1) = 0U; // Response count[15:8]
*(response+2) = 0U; // Response value
num = 3U;
break;
}
if ((*(request+3) & DAP_TRANSFER_RnW) != 0U) {
// Read register block
num |= 4U << 16;
} else {
// Write register block
num |= (4U + (((uint32_t)(*(request+1)) | (uint32_t)(*(request+2) << 8)) * 4)) << 16;
}
return (num);
}
// Process SWD Write ABORT command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response
#if (DAP_SWD != 0)
static uint32_t DAP_SWD_WriteAbort(const uint8_t *request, uint8_t *response) {
uint32_t data;
// Load data (Ignore DAP index)
data = (uint32_t)(*(request+1) << 0) |
(uint32_t)(*(request+2) << 8) |
(uint32_t)(*(request+3) << 16) |
(uint32_t)(*(request+4) << 24);
// Write Abort register
SWD_Transfer(DP_ABORT, &data);
*response = DAP_OK;
return (1U);
}
#endif
// Process JTAG Write ABORT command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response
#if (DAP_JTAG != 0)
static uint32_t DAP_JTAG_WriteAbort(const uint8_t *request, uint8_t *response) {
uint32_t data;
// Device index (JTAP TAP)
DAP_Data.jtag_dev.index = *request;
if (DAP_Data.jtag_dev.index >= DAP_Data.jtag_dev.count) {
*response = DAP_ERROR;
return (1U);
}
// Select JTAG chain
JTAG_IR(JTAG_ABORT);
// Load data
data = (uint32_t)(*(request+1) << 0) |
(uint32_t)(*(request+2) << 8) |
(uint32_t)(*(request+3) << 16) |
(uint32_t)(*(request+4) << 24);
// Write Abort register
JTAG_WriteAbort(data);
*response = DAP_OK;
return (1U);
}
#endif
// Process Write ABORT command and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
static uint32_t DAP_WriteAbort(const uint8_t *request, uint8_t *response) {
uint32_t num;
switch (DAP_Data.debug_port) {
#if (DAP_SWD != 0)
case DAP_PORT_SWD:
num = DAP_SWD_WriteAbort (request, response);
break;
#endif
#if (DAP_JTAG != 0)
case DAP_PORT_JTAG:
num = DAP_JTAG_WriteAbort(request, response);
break;
#endif
default:
*response = DAP_ERROR;
num = 1U;
break;
}
return ((5U << 16) | num);
}
// Process DAP Vendor command request and prepare response
// Default function (can be overridden)
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
__WEAK uint32_t DAP_ProcessVendorCommand(const uint8_t *request, uint8_t *response) {
(void)request;
*response = ID_DAP_Invalid;
return ((1U << 16) | 1U);
}
// Process DAP command request and prepare response
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t DAP_ProcessCommand(const uint8_t *request, uint8_t *response) {
uint32_t num;
if ((*request >= ID_DAP_Vendor0) && (*request <= ID_DAP_Vendor31)) {
return DAP_ProcessVendorCommand(request, response);
}
*response++ = *request;
switch (*request++) {
case ID_DAP_Info:
num = DAP_Info(*request, response+1);
*response = (uint8_t)num;
return ((2U << 16) + 2U + num);
case ID_DAP_HostStatus:
num = DAP_HostStatus(request, response);
break;
case ID_DAP_Connect:
num = DAP_Connect(request, response);
break;
case ID_DAP_Disconnect:
num = DAP_Disconnect(response);
break;
case ID_DAP_Delay:
num = DAP_Delay(request, response);
break;
case ID_DAP_ResetTarget:
num = DAP_ResetTarget(response);
break;
case ID_DAP_SWJ_Pins:
num = DAP_SWJ_Pins(request, response);
break;
case ID_DAP_SWJ_Clock:
num = DAP_SWJ_Clock(request, response);
break;
case ID_DAP_SWJ_Sequence:
num = DAP_SWJ_Sequence(request, response);
break;
case ID_DAP_SWD_Configure:
num = DAP_SWD_Configure(request, response);
break;
case ID_DAP_SWD_Sequence:
num = DAP_SWD_Sequence(request, response);
break;
case ID_DAP_JTAG_Sequence:
num = DAP_JTAG_Sequence(request, response);
break;
case ID_DAP_JTAG_Configure:
num = DAP_JTAG_Configure(request, response);
break;
case ID_DAP_JTAG_IDCODE:
num = DAP_JTAG_IDCode(request, response);
break;
case ID_DAP_TransferConfigure:
num = DAP_TransferConfigure(request, response);
break;
case ID_DAP_Transfer:
num = DAP_Transfer(request, response);
break;
case ID_DAP_TransferBlock:
num = DAP_TransferBlock(request, response);
break;
case ID_DAP_WriteABORT:
num = DAP_WriteAbort(request, response);
break;
#if ((SWO_UART != 0) || (SWO_MANCHESTER != 0))
case ID_DAP_SWO_Transport:
num = SWO_Transport(request, response);
break;
case ID_DAP_SWO_Mode:
num = SWO_Mode(request, response);
break;
case ID_DAP_SWO_Baudrate:
num = SWO_Baudrate(request, response);
break;
case ID_DAP_SWO_Control:
num = SWO_Control(request, response);
break;
case ID_DAP_SWO_Status:
num = SWO_Status(response);
break;
case ID_DAP_SWO_ExtendedStatus:
num = SWO_ExtendedStatus(request, response);
break;
case ID_DAP_SWO_Data:
num = SWO_Data(request, response);
break;
#endif
#if (DAP_UART != 0)
case ID_DAP_UART_Transport:
num = UART_Transport(request, response);
break;
case ID_DAP_UART_Configure:
num = UART_Configure(request, response);
break;
case ID_DAP_UART_Control:
num = UART_Control(request, response);
break;
case ID_DAP_UART_Status:
num = UART_Status(response);
break;
case ID_DAP_UART_Transfer:
num = UART_Transfer(request, response);
break;
#endif
default:
*(response-1) = ID_DAP_Invalid;
return ((1U << 16) | 1U);
}
return ((1U << 16) + 1U + num);
}
// Execute DAP command (process request and prepare response)
// request: pointer to request data
// response: pointer to response data
// return: number of bytes in response (lower 16 bits)
// number of bytes in request (upper 16 bits)
uint32_t DAP_ExecuteCommand(const uint8_t *request, uint8_t *response) {
uint32_t cnt, num, n;
if (*request == ID_DAP_ExecuteCommands) {
*response++ = *request++;
cnt = *request++;
*response++ = (uint8_t)cnt;
num = (2U << 16) | 2U;
while (cnt--) {
n = DAP_ProcessCommand(request, response);
num += n;
request += (uint16_t)(n >> 16);
response += (uint16_t) n;
}
return (num);
}
return DAP_ProcessCommand(request, response);
}
// Setup DAP
void DAP_Setup(void) {
// Default settings
DAP_Data.debug_port = 0U;
DAP_Data.transfer.idle_cycles = 0U;
DAP_Data.transfer.retry_count = 100U;
DAP_Data.transfer.match_retry = 0U;
DAP_Data.transfer.match_mask = 0x00000000U;
#if (DAP_SWD != 0)
DAP_Data.swd_conf.turnaround = 1U;
DAP_Data.swd_conf.data_phase = 0U;
#endif
#if (DAP_JTAG != 0)
DAP_Data.jtag_dev.count = 0U;
#endif
// Sets DAP_Data.fast_clock and DAP_Data.clock_delay.
Set_Clock_Delay(DAP_DEFAULT_SWJ_CLOCK);
DAP_SETUP(); // Device specific setup
}