This commit is contained in:
commit
c4b421e13a
|
@ -0,0 +1,7 @@
|
|||
language: c
|
||||
|
||||
compiler:
|
||||
- clang
|
||||
- gcc
|
||||
|
||||
script: make
|
|
@ -0,0 +1,20 @@
|
|||
zlib License
|
||||
|
||||
Copyright (C) 2015-2018 Lewis Van Winkle
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgement in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
CFLAGS = -Wall -Wshadow -O3 -g -march=native
|
||||
LDLIBS = -lm
|
||||
|
||||
all: check example1 example2 example3 example4 mytest
|
||||
|
||||
sigmoid: CFLAGS += -Dgenann_act=genann_act_sigmoid_cached
|
||||
sigmoid: all
|
||||
|
||||
threshold: CFLAGS += -Dgenann_act=genann_act_threshold
|
||||
threshold: all
|
||||
|
||||
linear: CFLAGS += -Dgenann_act=genann_act_linear
|
||||
linear: all
|
||||
|
||||
test: test.o genann.o
|
||||
|
||||
check: test
|
||||
./$^
|
||||
|
||||
example1: example1.o genann.o
|
||||
|
||||
example2: example2.o genann.o
|
||||
|
||||
example3: example3.o genann.o
|
||||
|
||||
example4: example4.o genann.o
|
||||
|
||||
mytest: mytest.o genann.o
|
||||
|
||||
clean:
|
||||
$(RM) *.o
|
||||
$(RM) test example1 example2 example3 example4 *.exe
|
||||
$(RM) persist.txt
|
||||
|
||||
.PHONY: sigmoid threshold linear clean
|
|
@ -0,0 +1,154 @@
|
|||
[![Build Status](https://travis-ci.org/codeplea/genann.svg?branch=master)](https://travis-ci.org/codeplea/genann)
|
||||
|
||||
<img alt="Genann logo" src="https://codeplea.com/public/content/genann_logo.png" align="right" />
|
||||
|
||||
# Genann
|
||||
|
||||
Genann is a minimal, well-tested library for training and using feedforward
|
||||
artificial neural networks (ANN) in C. Its primary focus is on being simple,
|
||||
fast, reliable, and hackable. It achieves this by providing only the necessary
|
||||
functions and little extra.
|
||||
|
||||
## Features
|
||||
|
||||
- **C99 with no dependencies**.
|
||||
- Contained in a single source code and header file.
|
||||
- Simple.
|
||||
- Fast and thread-safe.
|
||||
- Easily extendible.
|
||||
- Implements backpropagation training.
|
||||
- *Compatible with alternative training methods* (classic optimization, genetic algorithms, etc)
|
||||
- Includes examples and test suite.
|
||||
- Released under the zlib license - free for nearly any use.
|
||||
|
||||
## Building
|
||||
|
||||
Genann is self-contained in two files: `genann.c` and `genann.h`. To use Genann, simply add those two files to your project.
|
||||
|
||||
## Example Code
|
||||
|
||||
Four example programs are included with the source code.
|
||||
|
||||
- [`example1.c`](./example1.c) - Trains an ANN on the XOR function using backpropagation.
|
||||
- [`example2.c`](./example2.c) - Trains an ANN on the XOR function using random search.
|
||||
- [`example3.c`](./example3.c) - Loads and runs an ANN from a file.
|
||||
- [`example4.c`](./example4.c) - Trains an ANN on the [IRIS data-set](https://archive.ics.uci.edu/ml/datasets/Iris) using backpropagation.
|
||||
|
||||
## Quick Example
|
||||
|
||||
We create an ANN taking 2 inputs, having 1 layer of 3 hidden neurons, and
|
||||
providing 2 outputs. It has the following structure:
|
||||
|
||||
![NN Example Structure](./doc/e1.png)
|
||||
|
||||
We then train it on a set of labeled data using backpropagation and ask it to
|
||||
predict on a test data point:
|
||||
|
||||
```C
|
||||
#include "genann.h"
|
||||
|
||||
/* Not shown, loading your training and test data. */
|
||||
double **training_data_input, **training_data_output, **test_data_input;
|
||||
|
||||
/* New network with 2 inputs,
|
||||
* 1 hidden layer of 3 neurons each,
|
||||
* and 2 outputs. */
|
||||
genann *ann = genann_init(2, 1, 3, 2);
|
||||
|
||||
/* Learn on the training set. */
|
||||
for (i = 0; i < 300; ++i) {
|
||||
for (j = 0; j < 100; ++j)
|
||||
genann_train(ann, training_data_input[j], training_data_output[j], 0.1);
|
||||
}
|
||||
|
||||
/* Run the network and see what it predicts. */
|
||||
double const *prediction = genann_run(ann, test_data_input[0]);
|
||||
printf("Output for the first test data point is: %f, %f\n", prediction[0], prediction[1]);
|
||||
|
||||
genann_free(ann);
|
||||
```
|
||||
|
||||
This example is to show API usage, it is not showing good machine learning
|
||||
techniques. In a real application you would likely want to learn on the test
|
||||
data in a random order. You would also want to monitor the learning to prevent
|
||||
over-fitting.
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
### Creating and Freeing ANNs
|
||||
```C
|
||||
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs);
|
||||
genann *genann_copy(genann const *ann);
|
||||
void genann_free(genann *ann);
|
||||
```
|
||||
|
||||
Creating a new ANN is done with the `genann_init()` function. Its arguments
|
||||
are the number of inputs, the number of hidden layers, the number of neurons in
|
||||
each hidden layer, and the number of outputs. It returns a `genann` struct pointer.
|
||||
|
||||
Calling `genann_copy()` will create a deep-copy of an existing `genann` struct.
|
||||
|
||||
Call `genann_free()` when you're finished with an ANN returned by `genann_init()`.
|
||||
|
||||
|
||||
### Training ANNs
|
||||
```C
|
||||
void genann_train(genann const *ann, double const *inputs,
|
||||
double const *desired_outputs, double learning_rate);
|
||||
```
|
||||
|
||||
`genann_train()` will preform one update using standard backpropogation. It
|
||||
should be called by passing in an array of inputs, an array of expected outputs,
|
||||
and a learning rate. See *example1.c* for an example of learning with
|
||||
backpropogation.
|
||||
|
||||
A primary design goal of Genann was to store all the network weights in one
|
||||
contigious block of memory. This makes it easy and efficient to train the
|
||||
network weights using direct-search numeric optimization algorthims,
|
||||
such as [Hill Climbing](https://en.wikipedia.org/wiki/Hill_climbing),
|
||||
[the Genetic Algorithm](https://en.wikipedia.org/wiki/Genetic_algorithm), [Simulated
|
||||
Annealing](https://en.wikipedia.org/wiki/Simulated_annealing), etc.
|
||||
These methods can be used by searching on the ANN's weights directly.
|
||||
Every `genann` struct contains the members `int total_weights;` and
|
||||
`double *weight;`. `*weight` points to an array of `total_weights`
|
||||
size which contains all weights used by the ANN. See *example2.c* for
|
||||
an example of training using random hill climbing search.
|
||||
|
||||
### Saving and Loading ANNs
|
||||
|
||||
```C
|
||||
genann *genann_read(FILE *in);
|
||||
void genann_write(genann const *ann, FILE *out);
|
||||
```
|
||||
|
||||
Genann provides the `genann_read()` and `genann_write()` functions for loading or saving an ANN in a text-based format.
|
||||
|
||||
### Evaluating
|
||||
|
||||
```C
|
||||
double const *genann_run(genann const *ann, double const *inputs);
|
||||
```
|
||||
|
||||
Call `genann_run()` on a trained ANN to run a feed-forward pass on a given set of inputs. `genann_run()`
|
||||
will provide a pointer to the array of predicted outputs (of `ann->outputs` length).
|
||||
|
||||
|
||||
## Hints
|
||||
|
||||
- All functions start with `genann_`.
|
||||
- The code is simple. Dig in and change things.
|
||||
|
||||
## Extra Resources
|
||||
|
||||
The [comp.ai.neural-nets
|
||||
FAQ](http://www.faqs.org/faqs/ai-faq/neural-nets/part1/) is an excellent
|
||||
resource for an introduction to artificial neural networks.
|
||||
|
||||
If you need an even smaller neural network library, check out the excellent single-hidden-layer library [tinn](https://github.com/glouw/tinn).
|
||||
|
||||
If you're looking for a heavier, more opinionated neural network library in C,
|
||||
I recommend the [FANN library](http://leenissen.dk/fann/wp/). Another
|
||||
good library is Peter van Rossum's [Lightweight Neural
|
||||
Network](http://lwneuralnet.sourceforge.net/), which despite its name, is
|
||||
heavier and has more features than Genann.
|
|
@ -0,0 +1,10 @@
|
|||
###
|
||||
# @Author: 陈逸凡 1343619937@qq.com
|
||||
# @Date: 2024-04-25 16:02:09
|
||||
# @LastEditors: 陈逸凡 1343619937@qq.com
|
||||
# @LastEditTime: 2024-04-25 16:02:21
|
||||
# @FilePath: \genann-master\build.sh
|
||||
# @Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
|
||||
###
|
||||
gcc genann.c my_test.c -o mytest -lm
|
||||
./mytest
|
|
@ -0,0 +1,9 @@
|
|||
digraph G {
|
||||
rankdir=LR;
|
||||
|
||||
{i1 i2} -> {h1 h2 h3} -> {o1 o2};
|
||||
i1, i2, h1, h2, h3, o1, o2 [shape=circle; label="";];
|
||||
|
||||
input -> hidden -> output [style=invis;];
|
||||
input, hidden, output [shape=plaintext;];
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 22 KiB |
|
@ -0,0 +1,150 @@
|
|||
5.1,3.5,1.4,0.2,Iris-setosa
|
||||
4.9,3.0,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.3,0.2,Iris-setosa
|
||||
4.6,3.1,1.5,0.2,Iris-setosa
|
||||
5.0,3.6,1.4,0.2,Iris-setosa
|
||||
5.4,3.9,1.7,0.4,Iris-setosa
|
||||
4.6,3.4,1.4,0.3,Iris-setosa
|
||||
5.0,3.4,1.5,0.2,Iris-setosa
|
||||
4.4,2.9,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.4,3.7,1.5,0.2,Iris-setosa
|
||||
4.8,3.4,1.6,0.2,Iris-setosa
|
||||
4.8,3.0,1.4,0.1,Iris-setosa
|
||||
4.3,3.0,1.1,0.1,Iris-setosa
|
||||
5.8,4.0,1.2,0.2,Iris-setosa
|
||||
5.7,4.4,1.5,0.4,Iris-setosa
|
||||
5.4,3.9,1.3,0.4,Iris-setosa
|
||||
5.1,3.5,1.4,0.3,Iris-setosa
|
||||
5.7,3.8,1.7,0.3,Iris-setosa
|
||||
5.1,3.8,1.5,0.3,Iris-setosa
|
||||
5.4,3.4,1.7,0.2,Iris-setosa
|
||||
5.1,3.7,1.5,0.4,Iris-setosa
|
||||
4.6,3.6,1.0,0.2,Iris-setosa
|
||||
5.1,3.3,1.7,0.5,Iris-setosa
|
||||
4.8,3.4,1.9,0.2,Iris-setosa
|
||||
5.0,3.0,1.6,0.2,Iris-setosa
|
||||
5.0,3.4,1.6,0.4,Iris-setosa
|
||||
5.2,3.5,1.5,0.2,Iris-setosa
|
||||
5.2,3.4,1.4,0.2,Iris-setosa
|
||||
4.7,3.2,1.6,0.2,Iris-setosa
|
||||
4.8,3.1,1.6,0.2,Iris-setosa
|
||||
5.4,3.4,1.5,0.4,Iris-setosa
|
||||
5.2,4.1,1.5,0.1,Iris-setosa
|
||||
5.5,4.2,1.4,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
5.0,3.2,1.2,0.2,Iris-setosa
|
||||
5.5,3.5,1.3,0.2,Iris-setosa
|
||||
4.9,3.1,1.5,0.1,Iris-setosa
|
||||
4.4,3.0,1.3,0.2,Iris-setosa
|
||||
5.1,3.4,1.5,0.2,Iris-setosa
|
||||
5.0,3.5,1.3,0.3,Iris-setosa
|
||||
4.5,2.3,1.3,0.3,Iris-setosa
|
||||
4.4,3.2,1.3,0.2,Iris-setosa
|
||||
5.0,3.5,1.6,0.6,Iris-setosa
|
||||
5.1,3.8,1.9,0.4,Iris-setosa
|
||||
4.8,3.0,1.4,0.3,Iris-setosa
|
||||
5.1,3.8,1.6,0.2,Iris-setosa
|
||||
4.6,3.2,1.4,0.2,Iris-setosa
|
||||
5.3,3.7,1.5,0.2,Iris-setosa
|
||||
5.0,3.3,1.4,0.2,Iris-setosa
|
||||
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||
6.3,3.3,6.0,2.5,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
7.1,3.0,5.9,2.1,Iris-virginica
|
||||
6.3,2.9,5.6,1.8,Iris-virginica
|
||||
6.5,3.0,5.8,2.2,Iris-virginica
|
||||
7.6,3.0,6.6,2.1,Iris-virginica
|
||||
4.9,2.5,4.5,1.7,Iris-virginica
|
||||
7.3,2.9,6.3,1.8,Iris-virginica
|
||||
6.7,2.5,5.8,1.8,Iris-virginica
|
||||
7.2,3.6,6.1,2.5,Iris-virginica
|
||||
6.5,3.2,5.1,2.0,Iris-virginica
|
||||
6.4,2.7,5.3,1.9,Iris-virginica
|
||||
6.8,3.0,5.5,2.1,Iris-virginica
|
||||
5.7,2.5,5.0,2.0,Iris-virginica
|
||||
5.8,2.8,5.1,2.4,Iris-virginica
|
||||
6.4,3.2,5.3,2.3,Iris-virginica
|
||||
6.5,3.0,5.5,1.8,Iris-virginica
|
||||
7.7,3.8,6.7,2.2,Iris-virginica
|
||||
7.7,2.6,6.9,2.3,Iris-virginica
|
||||
6.0,2.2,5.0,1.5,Iris-virginica
|
||||
6.9,3.2,5.7,2.3,Iris-virginica
|
||||
5.6,2.8,4.9,2.0,Iris-virginica
|
||||
7.7,2.8,6.7,2.0,Iris-virginica
|
||||
6.3,2.7,4.9,1.8,Iris-virginica
|
||||
6.7,3.3,5.7,2.1,Iris-virginica
|
||||
7.2,3.2,6.0,1.8,Iris-virginica
|
||||
6.2,2.8,4.8,1.8,Iris-virginica
|
||||
6.1,3.0,4.9,1.8,Iris-virginica
|
||||
6.4,2.8,5.6,2.1,Iris-virginica
|
||||
7.2,3.0,5.8,1.6,Iris-virginica
|
||||
7.4,2.8,6.1,1.9,Iris-virginica
|
||||
7.9,3.8,6.4,2.0,Iris-virginica
|
||||
6.4,2.8,5.6,2.2,Iris-virginica
|
||||
6.3,2.8,5.1,1.5,Iris-virginica
|
||||
6.1,2.6,5.6,1.4,Iris-virginica
|
||||
7.7,3.0,6.1,2.3,Iris-virginica
|
||||
6.3,3.4,5.6,2.4,Iris-virginica
|
||||
6.4,3.1,5.5,1.8,Iris-virginica
|
||||
6.0,3.0,4.8,1.8,Iris-virginica
|
||||
6.9,3.1,5.4,2.1,Iris-virginica
|
||||
6.7,3.1,5.6,2.4,Iris-virginica
|
||||
6.9,3.1,5.1,2.3,Iris-virginica
|
||||
5.8,2.7,5.1,1.9,Iris-virginica
|
||||
6.8,3.2,5.9,2.3,Iris-virginica
|
||||
6.7,3.3,5.7,2.5,Iris-virginica
|
||||
6.7,3.0,5.2,2.3,Iris-virginica
|
||||
6.3,2.5,5.0,1.9,Iris-virginica
|
||||
6.5,3.0,5.2,2.0,Iris-virginica
|
||||
6.2,3.4,5.4,2.3,Iris-virginica
|
||||
5.9,3.0,5.1,1.8,Iris-virginica
|
|
@ -0,0 +1,69 @@
|
|||
1. Title: Iris Plants Database
|
||||
Updated Sept 21 by C.Blake - Added discrepency information
|
||||
|
||||
2. Sources:
|
||||
(a) Creator: R.A. Fisher
|
||||
(b) Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
|
||||
(c) Date: July, 1988
|
||||
|
||||
3. Past Usage:
|
||||
- Publications: too many to mention!!! Here are a few.
|
||||
1. Fisher,R.A. "The use of multiple measurements in taxonomic problems"
|
||||
Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions
|
||||
to Mathematical Statistics" (John Wiley, NY, 1950).
|
||||
2. Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.
|
||||
(Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.
|
||||
3. Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System
|
||||
Structure and Classification Rule for Recognition in Partially Exposed
|
||||
Environments". IEEE Transactions on Pattern Analysis and Machine
|
||||
Intelligence, Vol. PAMI-2, No. 1, 67-71.
|
||||
-- Results:
|
||||
-- very low misclassification rates (0% for the setosa class)
|
||||
4. Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE
|
||||
Transactions on Information Theory, May 1972, 431-433.
|
||||
-- Results:
|
||||
-- very low misclassification rates again
|
||||
5. See also: 1988 MLC Proceedings, 54-64. Cheeseman et al's AUTOCLASS II
|
||||
conceptual clustering system finds 3 classes in the data.
|
||||
|
||||
4. Relevant Information:
|
||||
--- This is perhaps the best known database to be found in the pattern
|
||||
recognition literature. Fisher's paper is a classic in the field
|
||||
and is referenced frequently to this day. (See Duda & Hart, for
|
||||
example.) The data set contains 3 classes of 50 instances each,
|
||||
where each class refers to a type of iris plant. One class is
|
||||
linearly separable from the other 2; the latter are NOT linearly
|
||||
separable from each other.
|
||||
--- Predicted attribute: class of iris plant.
|
||||
--- This is an exceedingly simple domain.
|
||||
--- This data differs from the data presented in Fishers article
|
||||
(identified by Steve Chadwick, spchadwick@espeedaz.net )
|
||||
The 35th sample should be: 4.9,3.1,1.5,0.2,"Iris-setosa"
|
||||
where the error is in the fourth feature.
|
||||
The 38th sample: 4.9,3.6,1.4,0.1,"Iris-setosa"
|
||||
where the errors are in the second and third features.
|
||||
|
||||
5. Number of Instances: 150 (50 in each of three classes)
|
||||
|
||||
6. Number of Attributes: 4 numeric, predictive attributes and the class
|
||||
|
||||
7. Attribute Information:
|
||||
1. sepal length in cm
|
||||
2. sepal width in cm
|
||||
3. petal length in cm
|
||||
4. petal width in cm
|
||||
5. class:
|
||||
-- Iris Setosa
|
||||
-- Iris Versicolour
|
||||
-- Iris Virginica
|
||||
|
||||
8. Missing Attribute Values: None
|
||||
|
||||
Summary Statistics:
|
||||
Min Max Mean SD Class Correlation
|
||||
sepal length: 4.3 7.9 5.84 0.83 0.7826
|
||||
sepal width: 2.0 4.4 3.05 0.43 -0.4194
|
||||
petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)
|
||||
petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)
|
||||
|
||||
9. Class Distribution: 33.3% for each of 3 classes.
|
|
@ -0,0 +1 @@
|
|||
2 1 2 1 -1.777 -5.734 -6.029 -4.460 -3.261 -3.172 2.444 -6.581 5.826
|
|
@ -0,0 +1,41 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include "genann.h"
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN example 1.\n");
|
||||
printf("Train a small ANN to the XOR function using backpropagation.\n");
|
||||
|
||||
/* This will make the neural network initialize differently each run. */
|
||||
/* If you don't get a good result, try again for a different result. */
|
||||
srand(time(0));
|
||||
|
||||
/* Input and expected out data for the XOR function. */
|
||||
const double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
const double output[4] = {0, 1, 1, 0};
|
||||
int i;
|
||||
|
||||
/* New network with 2 inputs,
|
||||
* 1 hidden layer of 2 neurons,
|
||||
* and 1 output. */
|
||||
genann *ann = genann_init(2, 1, 2, 1);
|
||||
|
||||
/* Train on the four labeled data points many times. */
|
||||
for (i = 0; i < 500; ++i) {
|
||||
genann_train(ann, input[0], output + 0, 3);
|
||||
genann_train(ann, input[1], output + 1, 3);
|
||||
genann_train(ann, input[2], output + 2, 3);
|
||||
genann_train(ann, input[3], output + 3, 3);
|
||||
}
|
||||
|
||||
/* Run the network and see what it predicts. */
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[0][0], input[0][1], *genann_run(ann, input[0]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[1][0], input[1][1], *genann_run(ann, input[1]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[2][0], input[2][1], *genann_run(ann, input[2]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[3][0], input[3][1], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,71 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <math.h>
|
||||
#include "genann.h"
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN example 2.\n");
|
||||
printf("Train a small ANN to the XOR function using random search.\n");
|
||||
|
||||
srand(time(0));
|
||||
|
||||
/* Input and expected out data for the XOR function. */
|
||||
const double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
const double output[4] = {0, 1, 1, 0};
|
||||
int i;
|
||||
|
||||
/* New network with 2 inputs,
|
||||
* 1 hidden layer of 2 neurons,
|
||||
* and 1 output. */
|
||||
genann *ann = genann_init(2, 1, 2, 1);
|
||||
|
||||
double err;
|
||||
double last_err = 1000;
|
||||
int count = 0;
|
||||
|
||||
do {
|
||||
++count;
|
||||
if (count % 1000 == 0) {
|
||||
/* We're stuck, start over. */
|
||||
genann_randomize(ann);
|
||||
last_err = 1000;
|
||||
}
|
||||
|
||||
genann *save = genann_copy(ann);
|
||||
|
||||
/* Take a random guess at the ANN weights. */
|
||||
for (i = 0; i < ann->total_weights; ++i) {
|
||||
ann->weight[i] += ((double)rand())/RAND_MAX-0.5;
|
||||
}
|
||||
|
||||
/* See how we did. */
|
||||
err = 0;
|
||||
err += pow(*genann_run(ann, input[0]) - output[0], 2.0);
|
||||
err += pow(*genann_run(ann, input[1]) - output[1], 2.0);
|
||||
err += pow(*genann_run(ann, input[2]) - output[2], 2.0);
|
||||
err += pow(*genann_run(ann, input[3]) - output[3], 2.0);
|
||||
|
||||
/* Keep these weights if they're an improvement. */
|
||||
if (err < last_err) {
|
||||
genann_free(save);
|
||||
last_err = err;
|
||||
} else {
|
||||
genann_free(ann);
|
||||
ann = save;
|
||||
}
|
||||
|
||||
} while (err > 0.01);
|
||||
|
||||
printf("Finished in %d loops.\n", count);
|
||||
|
||||
/* Run the network and see what it predicts. */
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[0][0], input[0][1], *genann_run(ann, input[0]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[1][0], input[1][1], *genann_run(ann, input[1]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[2][0], input[2][1], *genann_run(ann, input[2]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[3][0], input[3][1], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,39 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "genann.h"
|
||||
|
||||
const char *save_name = "example/xor.ann";
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN example 3.\n");
|
||||
printf("Load a saved ANN to solve the XOR function.\n");
|
||||
|
||||
|
||||
FILE *saved = fopen(save_name, "r");
|
||||
if (!saved) {
|
||||
printf("Couldn't open file: %s\n", save_name);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
genann *ann = genann_read(saved);
|
||||
fclose(saved);
|
||||
|
||||
if (!ann) {
|
||||
printf("Error loading ANN from file: %s.", save_name);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
/* Input data for the XOR function. */
|
||||
const double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
|
||||
/* Run the network and see what it predicts. */
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[0][0], input[0][1], *genann_run(ann, input[0]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[1][0], input[1][1], *genann_run(ann, input[1]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[2][0], input[2][1], *genann_run(ann, input[2]));
|
||||
printf("Output for [%1.f, %1.f] is %1.f.\n", input[3][0], input[3][1], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,119 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "genann.h"
|
||||
|
||||
/* This example is to illustrate how to use GENANN.
|
||||
* It is NOT an example of good machine learning techniques.
|
||||
*/
|
||||
|
||||
const char *iris_data = "example/iris.data";
|
||||
|
||||
double *input, *class;
|
||||
int samples;
|
||||
const char *class_names[] = {"Iris-setosa", "Iris-versicolor", "Iris-virginica"};
|
||||
|
||||
void load_data() {
|
||||
/* Load the iris data-set. */
|
||||
FILE *in = fopen("example/iris.data", "r");
|
||||
if (!in) {
|
||||
printf("Could not open file: %s\n", iris_data);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* Loop through the data to get a count. */
|
||||
char line[1024];
|
||||
while (!feof(in) && fgets(line, 1024, in)) {
|
||||
++samples;
|
||||
}
|
||||
fseek(in, 0, SEEK_SET);
|
||||
|
||||
printf("Loading %d data points from %s\n", samples, iris_data);
|
||||
|
||||
/* Allocate memory for input and output data. */
|
||||
input = malloc(sizeof(double) * samples * 4);
|
||||
class = malloc(sizeof(double) * samples * 3);
|
||||
|
||||
/* Read the file into our arrays. */
|
||||
int i, j;
|
||||
for (i = 0; i < samples; ++i) {
|
||||
double *p = input + i * 4;
|
||||
double *c = class + i * 3;
|
||||
c[0] = c[1] = c[2] = 0.0;
|
||||
|
||||
if (fgets(line, 1024, in) == NULL) {
|
||||
perror("fgets");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
char *split = strtok(line, ",");
|
||||
for (j = 0; j < 4; ++j) {
|
||||
p[j] = atof(split);
|
||||
split = strtok(0, ",");
|
||||
}
|
||||
|
||||
split[strlen(split)-1] = 0;
|
||||
if (strcmp(split, class_names[0]) == 0) {c[0] = 1.0;}
|
||||
else if (strcmp(split, class_names[1]) == 0) {c[1] = 1.0;}
|
||||
else if (strcmp(split, class_names[2]) == 0) {c[2] = 1.0;}
|
||||
else {
|
||||
printf("Unknown class %s.\n", split);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
/* printf("Data point %d is %f %f %f %f -> %f %f %f\n", i, p[0], p[1], p[2], p[3], c[0], c[1], c[2]); */
|
||||
}
|
||||
|
||||
fclose(in);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN example 4.\n");
|
||||
printf("Train an ANN on the IRIS dataset using backpropagation.\n");
|
||||
|
||||
srand(time(0));
|
||||
|
||||
/* Load the data from file. */
|
||||
load_data();
|
||||
|
||||
/* 4 inputs.
|
||||
* 1 hidden layer(s) of 4 neurons.
|
||||
* 3 outputs (1 per class)
|
||||
*/
|
||||
genann *ann = genann_init(4, 1, 4, 3);
|
||||
|
||||
int i, j;
|
||||
int loops = 5000;
|
||||
|
||||
/* Train the network with backpropagation. */
|
||||
printf("Training for %d loops over data.\n", loops);
|
||||
for (i = 0; i < loops; ++i) {
|
||||
for (j = 0; j < samples; ++j) {
|
||||
genann_train(ann, input + j*4, class + j*3, .01);
|
||||
}
|
||||
/* printf("%1.2f ", xor_score(ann)); */
|
||||
}
|
||||
|
||||
int correct = 0;
|
||||
for (j = 0; j < samples; ++j) {
|
||||
const double *guess = genann_run(ann, input + j*4);
|
||||
if (class[j*3+0] == 1.0) {if (guess[0] > guess[1] && guess[0] > guess[2]) ++correct;}
|
||||
else if (class[j*3+1] == 1.0) {if (guess[1] > guess[0] && guess[1] > guess[2]) ++correct;}
|
||||
else if (class[j*3+2] == 1.0) {if (guess[2] > guess[0] && guess[2] > guess[1]) ++correct;}
|
||||
else {printf("Logic error.\n"); exit(1);}
|
||||
}
|
||||
|
||||
printf("%d/%d correct (%0.1f%%).\n", correct, samples, (double)correct / samples * 100.0);
|
||||
|
||||
|
||||
|
||||
genann_free(ann);
|
||||
free(input);
|
||||
free(class);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,405 @@
|
|||
/*
|
||||
* GENANN - Minimal C Artificial Neural Network
|
||||
*
|
||||
* Copyright (c) 2015-2018 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "genann.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifndef genann_act
|
||||
#define genann_act_hidden genann_act_hidden_indirect
|
||||
#define genann_act_output genann_act_output_indirect
|
||||
#else
|
||||
#define genann_act_hidden genann_act
|
||||
#define genann_act_output genann_act
|
||||
#endif
|
||||
|
||||
#define LOOKUP_SIZE 4096
|
||||
|
||||
double genann_act_hidden_indirect(const struct genann *ann, double a) {
|
||||
return ann->activation_hidden(ann, a);
|
||||
}
|
||||
|
||||
double genann_act_output_indirect(const struct genann *ann, double a) {
|
||||
return ann->activation_output(ann, a);
|
||||
}
|
||||
|
||||
const double sigmoid_dom_min = -15.0;
|
||||
const double sigmoid_dom_max = 15.0;
|
||||
double interval;
|
||||
double lookup[LOOKUP_SIZE];
|
||||
|
||||
#ifdef __GNUC__
|
||||
#define likely(x) __builtin_expect(!!(x), 1)
|
||||
#define unlikely(x) __builtin_expect(!!(x), 0)
|
||||
#define unused __attribute__((unused))
|
||||
#else
|
||||
#define likely(x) x
|
||||
#define unlikely(x) x
|
||||
#define unused
|
||||
#pragma warning(disable : 4996) /* For fscanf */
|
||||
#endif
|
||||
|
||||
|
||||
double genann_act_sigmoid(const genann *ann unused, double a) {
|
||||
if (a < -45.0) return 0;
|
||||
if (a > 45.0) return 1;
|
||||
return 1.0 / (1 + exp(-a));
|
||||
}
|
||||
|
||||
void genann_init_sigmoid_lookup(const genann *ann) {
|
||||
const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE;
|
||||
int i;
|
||||
|
||||
interval = LOOKUP_SIZE / (sigmoid_dom_max - sigmoid_dom_min);
|
||||
for (i = 0; i < LOOKUP_SIZE; ++i) {
|
||||
lookup[i] = genann_act_sigmoid(ann, sigmoid_dom_min + f * i);
|
||||
}
|
||||
}
|
||||
|
||||
double genann_act_sigmoid_cached(const genann *ann unused, double a) {
|
||||
assert(!isnan(a));
|
||||
|
||||
if (a < sigmoid_dom_min) return lookup[0];
|
||||
if (a >= sigmoid_dom_max) return lookup[LOOKUP_SIZE - 1];
|
||||
|
||||
size_t j = (size_t)((a-sigmoid_dom_min)*interval+0.5);
|
||||
|
||||
/* Because floating point... */
|
||||
if (unlikely(j >= LOOKUP_SIZE)) return lookup[LOOKUP_SIZE - 1];
|
||||
|
||||
return lookup[j];
|
||||
}
|
||||
|
||||
double genann_act_linear(const struct genann *ann unused, double a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
double genann_act_threshold(const struct genann *ann unused, double a) {
|
||||
return a > 0;
|
||||
}
|
||||
|
||||
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs) {
|
||||
if (hidden_layers < 0) return 0;
|
||||
if (inputs < 1) return 0;
|
||||
if (outputs < 1) return 0;
|
||||
if (hidden_layers > 0 && hidden < 1) return 0;
|
||||
|
||||
|
||||
const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0;
|
||||
const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs;
|
||||
const int total_weights = (hidden_weights + output_weights);
|
||||
|
||||
const int total_neurons = (inputs + hidden * hidden_layers + outputs);
|
||||
|
||||
/* Allocate extra size for weights, outputs, and deltas. */
|
||||
const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs));
|
||||
genann *ret = malloc(size);
|
||||
if (!ret) return 0;
|
||||
|
||||
ret->inputs = inputs;
|
||||
ret->hidden_layers = hidden_layers;
|
||||
ret->hidden = hidden;
|
||||
ret->outputs = outputs;
|
||||
|
||||
ret->total_weights = total_weights;
|
||||
ret->total_neurons = total_neurons;
|
||||
|
||||
/* Set pointers. */
|
||||
ret->weight = (double*)((char*)ret + sizeof(genann));
|
||||
ret->output = ret->weight + ret->total_weights;
|
||||
ret->delta = ret->output + ret->total_neurons;
|
||||
|
||||
genann_randomize(ret);
|
||||
|
||||
ret->activation_hidden = genann_act_sigmoid_cached;
|
||||
ret->activation_output = genann_act_sigmoid_cached;
|
||||
|
||||
genann_init_sigmoid_lookup(ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
genann *genann_read(FILE *in) {
|
||||
int inputs, hidden_layers, hidden, outputs;
|
||||
int rc;
|
||||
|
||||
errno = 0;
|
||||
rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs);
|
||||
if (rc < 4 || errno != 0) {
|
||||
perror("fscanf");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
genann *ann = genann_init(inputs, hidden_layers, hidden, outputs);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < ann->total_weights; ++i) {
|
||||
errno = 0;
|
||||
rc = fscanf(in, " %le", ann->weight + i);
|
||||
if (rc < 1 || errno != 0) {
|
||||
perror("fscanf");
|
||||
genann_free(ann);
|
||||
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
return ann;
|
||||
}
|
||||
|
||||
|
||||
genann *genann_copy(genann const *ann) {
|
||||
const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs));
|
||||
genann *ret = malloc(size);
|
||||
if (!ret) return 0;
|
||||
|
||||
memcpy(ret, ann, size);
|
||||
|
||||
/* Set pointers. */
|
||||
ret->weight = (double*)((char*)ret + sizeof(genann));
|
||||
ret->output = ret->weight + ret->total_weights;
|
||||
ret->delta = ret->output + ret->total_neurons;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
void genann_randomize(genann *ann) {
|
||||
int i;
|
||||
for (i = 0; i < ann->total_weights; ++i) {
|
||||
double r = GENANN_RANDOM();
|
||||
/* Sets weights from -0.5 to 0.5. */
|
||||
ann->weight[i] = r - 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void genann_free(genann *ann) {
|
||||
/* The weight, output, and delta pointers go to the same buffer. */
|
||||
free(ann);
|
||||
}
|
||||
|
||||
|
||||
double const *genann_run(genann const *ann, double const *inputs) {
|
||||
double const *w = ann->weight;
|
||||
double *o = ann->output + ann->inputs;
|
||||
double const *i = ann->output;
|
||||
|
||||
/* Copy the inputs to the scratch area, where we also store each neuron's
|
||||
* output, for consistency. This way the first layer isn't a special case. */
|
||||
memcpy(ann->output, inputs, sizeof(double) * ann->inputs);
|
||||
|
||||
int h, j, k;
|
||||
|
||||
if (!ann->hidden_layers) {
|
||||
double *ret = o;
|
||||
for (j = 0; j < ann->outputs; ++j) {
|
||||
double sum = *w++ * -1.0;
|
||||
for (k = 0; k < ann->inputs; ++k) {
|
||||
sum += *w++ * i[k];
|
||||
}
|
||||
*o++ = genann_act_output(ann, sum);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Figure input layer */
|
||||
for (j = 0; j < ann->hidden; ++j) {
|
||||
double sum = *w++ * -1.0;
|
||||
for (k = 0; k < ann->inputs; ++k) {
|
||||
sum += *w++ * i[k];
|
||||
}
|
||||
*o++ = genann_act_hidden(ann, sum);
|
||||
}
|
||||
|
||||
i += ann->inputs;
|
||||
|
||||
/* Figure hidden layers, if any. */
|
||||
for (h = 1; h < ann->hidden_layers; ++h) {
|
||||
for (j = 0; j < ann->hidden; ++j) {
|
||||
double sum = *w++ * -1.0;
|
||||
for (k = 0; k < ann->hidden; ++k) {
|
||||
sum += *w++ * i[k];
|
||||
}
|
||||
*o++ = genann_act_hidden(ann, sum);
|
||||
}
|
||||
|
||||
i += ann->hidden;
|
||||
}
|
||||
|
||||
double const *ret = o;
|
||||
|
||||
/* Figure output layer. */
|
||||
for (j = 0; j < ann->outputs; ++j) {
|
||||
double sum = *w++ * -1.0;
|
||||
for (k = 0; k < ann->hidden; ++k) {
|
||||
sum += *w++ * i[k];
|
||||
}
|
||||
*o++ = genann_act_output(ann, sum);
|
||||
}
|
||||
|
||||
/* Sanity check that we used all weights and wrote all outputs. */
|
||||
assert(w - ann->weight == ann->total_weights);
|
||||
assert(o - ann->output == ann->total_neurons);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) {
|
||||
/* To begin with, we must run the network forward. */
|
||||
genann_run(ann, inputs);
|
||||
|
||||
int h, j, k;
|
||||
|
||||
/* First set the output layer deltas. */
|
||||
{
|
||||
double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */
|
||||
double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */
|
||||
double const *t = desired_outputs; /* First desired output. */
|
||||
|
||||
|
||||
/* Set output layer deltas. */
|
||||
if (genann_act_output == genann_act_linear ||
|
||||
ann->activation_output == genann_act_linear) {
|
||||
for (j = 0; j < ann->outputs; ++j) {
|
||||
*d++ = *t++ - *o++;
|
||||
}
|
||||
} else {
|
||||
for (j = 0; j < ann->outputs; ++j) {
|
||||
*d++ = (*t - *o) * *o * (1.0 - *o);
|
||||
++o; ++t;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Set hidden layer deltas, start on last layer and work backwards. */
|
||||
/* Note that loop is skipped in the case of hidden_layers == 0. */
|
||||
for (h = ann->hidden_layers - 1; h >= 0; --h) {
|
||||
|
||||
/* Find first output and delta in this layer. */
|
||||
double const *o = ann->output + ann->inputs + (h * ann->hidden);
|
||||
double *d = ann->delta + (h * ann->hidden);
|
||||
|
||||
/* Find first delta in following layer (which may be hidden or output). */
|
||||
double const * const dd = ann->delta + ((h+1) * ann->hidden);
|
||||
|
||||
/* Find first weight in following layer (which may be hidden or output). */
|
||||
double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h));
|
||||
|
||||
for (j = 0; j < ann->hidden; ++j) {
|
||||
|
||||
double delta = 0;
|
||||
|
||||
for (k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k) {
|
||||
const double forward_delta = dd[k];
|
||||
const int windex = k * (ann->hidden + 1) + (j + 1);
|
||||
const double forward_weight = ww[windex];
|
||||
delta += forward_delta * forward_weight;
|
||||
}
|
||||
|
||||
*d = *o * (1.0-*o) * delta;
|
||||
++d; ++o;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Train the outputs. */
|
||||
{
|
||||
/* Find first output delta. */
|
||||
double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */
|
||||
|
||||
/* Find first weight to first output delta. */
|
||||
double *w = ann->weight + (ann->hidden_layers
|
||||
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1))
|
||||
: (0));
|
||||
|
||||
/* Find first output in previous layer. */
|
||||
double const * const i = ann->output + (ann->hidden_layers
|
||||
? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1))
|
||||
: 0);
|
||||
|
||||
/* Set output layer weights. */
|
||||
for (j = 0; j < ann->outputs; ++j) {
|
||||
*w++ += *d * learning_rate * -1.0;
|
||||
for (k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) {
|
||||
*w++ += *d * learning_rate * i[k-1];
|
||||
}
|
||||
|
||||
++d;
|
||||
}
|
||||
|
||||
assert(w - ann->weight == ann->total_weights);
|
||||
}
|
||||
|
||||
|
||||
/* Train the hidden layers. */
|
||||
for (h = ann->hidden_layers - 1; h >= 0; --h) {
|
||||
|
||||
/* Find first delta in this layer. */
|
||||
double const *d = ann->delta + (h * ann->hidden);
|
||||
|
||||
/* Find first input to this layer. */
|
||||
double const *i = ann->output + (h
|
||||
? (ann->inputs + ann->hidden * (h-1))
|
||||
: 0);
|
||||
|
||||
/* Find first weight to this layer. */
|
||||
double *w = ann->weight + (h
|
||||
? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1))
|
||||
: 0);
|
||||
|
||||
|
||||
for (j = 0; j < ann->hidden; ++j) {
|
||||
*w++ += *d * learning_rate * -1.0;
|
||||
for (k = 1; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k) {
|
||||
*w++ += *d * learning_rate * i[k-1];
|
||||
}
|
||||
++d;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void genann_write(genann const *ann, FILE *out) {
|
||||
fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < ann->total_weights; ++i) {
|
||||
fprintf(out, " %.20e", ann->weight[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -0,0 +1,108 @@
|
|||
/*
|
||||
* GENANN - Minimal C Artificial Neural Network
|
||||
*
|
||||
* Copyright (c) 2015-2018 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef GENANN_H
|
||||
#define GENANN_H
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef GENANN_RANDOM
|
||||
/* We use the following for uniform random numbers between 0 and 1.
|
||||
* If you have a better function, redefine this macro. */
|
||||
#define GENANN_RANDOM() (((double)rand())/RAND_MAX)
|
||||
#endif
|
||||
|
||||
struct genann;
|
||||
|
||||
typedef double (*genann_actfun)(const struct genann *ann, double a);
|
||||
|
||||
typedef struct genann {
|
||||
/* How many inputs, outputs, and hidden neurons. */
|
||||
int inputs, hidden_layers, hidden, outputs;
|
||||
|
||||
/* Which activation function to use for hidden neurons. Default: gennann_act_sigmoid_cached*/
|
||||
genann_actfun activation_hidden;
|
||||
|
||||
/* Which activation function to use for output. Default: gennann_act_sigmoid_cached*/
|
||||
genann_actfun activation_output;
|
||||
|
||||
/* Total number of weights, and size of weights buffer. */
|
||||
int total_weights;
|
||||
|
||||
/* Total number of neurons + inputs and size of output buffer. */
|
||||
int total_neurons;
|
||||
|
||||
/* All weights (total_weights long). */
|
||||
double *weight;
|
||||
|
||||
/* Stores input array and output of each neuron (total_neurons long). */
|
||||
double *output;
|
||||
|
||||
/* Stores delta of each hidden and output neuron (total_neurons - inputs long). */
|
||||
double *delta;
|
||||
|
||||
} genann;
|
||||
|
||||
/* Creates and returns a new ann. */
|
||||
genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs);
|
||||
|
||||
/* Creates ANN from file saved with genann_write. */
|
||||
genann *genann_read(FILE *in);
|
||||
|
||||
/* Sets weights randomly. Called by init. */
|
||||
void genann_randomize(genann *ann);
|
||||
|
||||
/* Returns a new copy of ann. */
|
||||
genann *genann_copy(genann const *ann);
|
||||
|
||||
/* Frees the memory used by an ann. */
|
||||
void genann_free(genann *ann);
|
||||
|
||||
/* Runs the feedforward algorithm to calculate the ann's output. */
|
||||
double const *genann_run(genann const *ann, double const *inputs);
|
||||
|
||||
/* Does a single backprop update. */
|
||||
void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate);
|
||||
|
||||
/* Saves the ann. */
|
||||
void genann_write(genann const *ann, FILE *out);
|
||||
|
||||
void genann_init_sigmoid_lookup(const genann *ann);
|
||||
double genann_act_sigmoid(const genann *ann, double a);
|
||||
double genann_act_sigmoid_cached(const genann *ann, double a);
|
||||
double genann_act_threshold(const genann *ann, double a);
|
||||
double genann_act_linear(const genann *ann, double a);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /*GENANN_H*/
|
|
@ -0,0 +1,127 @@
|
|||
/*
|
||||
*
|
||||
* MINCTEST - Minimal C Test Library - 0.1
|
||||
*
|
||||
* Copyright (c) 2014, 2015, 2016 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/*
|
||||
* MINCTEST - Minimal testing library for C
|
||||
*
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* void test1() {
|
||||
* lok('a' == 'a');
|
||||
* }
|
||||
*
|
||||
* void test2() {
|
||||
* lequal(5, 6);
|
||||
* lfequal(5.5, 5.6);
|
||||
* }
|
||||
*
|
||||
* int main() {
|
||||
* lrun("test1", test1);
|
||||
* lrun("test2", test2);
|
||||
* lresults();
|
||||
* return lfails != 0;
|
||||
* }
|
||||
*
|
||||
*
|
||||
*
|
||||
* Hints:
|
||||
* All functions/variables start with the letter 'l'.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#ifndef __MINCTEST_H__
|
||||
#define __MINCTEST_H__
|
||||
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <time.h>
|
||||
|
||||
|
||||
/* How far apart can floats be before we consider them unequal. */
|
||||
#define LTEST_FLOAT_TOLERANCE 0.001
|
||||
|
||||
|
||||
/* Track the number of passes, fails. */
|
||||
/* NB this is made for all tests to be in one file. */
|
||||
static int ltests = 0;
|
||||
static int lfails = 0;
|
||||
|
||||
|
||||
/* Display the test results. */
|
||||
#define lresults() do {\
|
||||
if (lfails == 0) {\
|
||||
printf("ALL TESTS PASSED (%d/%d)\n", ltests, ltests);\
|
||||
} else {\
|
||||
printf("SOME TESTS FAILED (%d/%d)\n", ltests-lfails, ltests);\
|
||||
}\
|
||||
} while (0)
|
||||
|
||||
|
||||
/* Run a test. Name can be any string to print out, test is the function name to call. */
|
||||
#define lrun(name, test) do {\
|
||||
const int ts = ltests;\
|
||||
const int fs = lfails;\
|
||||
const clock_t start = clock();\
|
||||
printf("\t%-14s", name);\
|
||||
test();\
|
||||
printf("pass:%2d fail:%2d %4dms\n",\
|
||||
(ltests-ts)-(lfails-fs), lfails-fs,\
|
||||
(int)((clock() - start) * 1000 / CLOCKS_PER_SEC));\
|
||||
} while (0)
|
||||
|
||||
|
||||
/* Assert a true statement. */
|
||||
#define lok(test) do {\
|
||||
++ltests;\
|
||||
if (!(test)) {\
|
||||
++lfails;\
|
||||
printf("%s:%d error \n", __FILE__, __LINE__);\
|
||||
}} while (0)
|
||||
|
||||
|
||||
/* Assert two integers are equal. */
|
||||
#define lequal(a, b) do {\
|
||||
++ltests;\
|
||||
if ((a) != (b)) {\
|
||||
++lfails;\
|
||||
printf("%s:%d (%d != %d)\n", __FILE__, __LINE__, (a), (b));\
|
||||
}} while (0)
|
||||
|
||||
|
||||
/* Assert two floats are equal (Within LTEST_FLOAT_TOLERANCE). */
|
||||
#define lfequal(a, b) do {\
|
||||
++ltests;\
|
||||
if (fabs((double)(a)-(double)(b)) > LTEST_FLOAT_TOLERANCE) {\
|
||||
++lfails;\
|
||||
printf("%s:%d (%f != %f)\n", __FILE__, __LINE__, (double)(a), (double)(b));\
|
||||
}} while (0)
|
||||
|
||||
|
||||
#endif /*__MINCTEST_H__*/
|
|
@ -0,0 +1,76 @@
|
|||
/** function comment
|
||||
* @Author: 陈逸凡 1343619937@qq.com
|
||||
* @Date: 2024-04-25 15:21:22
|
||||
* @LastEditors: 陈逸凡 1343619937@qq.com
|
||||
* @LastEditTime: 2024-04-25 16:06:42
|
||||
* @FilePath: \genann-master\my_test.c
|
||||
* @Description: 这是默认设置,请设置`customMade`, 打开koroFileHeader查看配置 进行设置: https://github.com/OBKoro1/koro1FileHeader/wiki/%E9%85%8D%E7%BD%AE
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include "genann.h"
|
||||
/*
|
||||
上面3组是吸到了
|
||||
下面3组是没吸到
|
||||
*/
|
||||
const double input[][300]={
|
||||
{2304,2288,2305,2337,2361,2354,2302,2220,2146,2095,2067,2068,2097,2141,2161,2113,1986,1821,1696,1626,1587,1570,1571,1547,1462,1358,1296,1257,1183,1093,1045,1024,1008,1019,1027,949,775,609,508,467,479,525,587,641,652,585,504,490,530,553,573,650,737,765,772,790,742,622,546,555,594,672,774,823,786,731,701,693,703,729,769,842,947,1035,1064,1042,1005,976,966,985,1045,1148,1266,1339,1332,1282,1242,1243,1274,1320,1373,1460,1577,1664,1677,1634,1576,1536,1514,1518,1570,1665,1765,1812,1795,1726,1661,1635,1631,1630,1643,1693,1765,1806,1782,1692,1583,1488,1415,1379,1385,1442,1508,1530,1489,1406,1327,1290,1283,1280,1293,1347,1429,1489,1488,1416,1312,1219,1160,1135,1158,1230,1324,1387,1379,1317,1249,1216,1214,1232,1269,1348,1458,1551,1574,1520,1422,1342,1296,1285,1324,1416,1526,1586,1576,1505,1435,1409,1416,1435,1474,1547,1643,1706,1695,1611,1510,1437,1398,1395,1429,1504,1579,1601,1552,1464,1389,1363,1369,1375,1392,1455,1550,1623,1626,1550,1439,1336,1264,1234,1262,1350,1468,1559,1574,1536,1502,1519,1583,1674,1773,1876,1970,2052,2102,2123,2148,2198,2267,2359,2467,2552,2605,2660,2701,2706,2750,2854,2920,2932,3000,3103,3127,3089,3116,3199,3235,3240,3271,3316,3356,3383,3374,3336,3300,3281,3285,3318,3328,3290,3269,3277,3236,3157,3129,3156,3171,3160,3136,3104,3080,3062,3028,2995,},
|
||||
{2317,2296,2305,2343,2379,2390,2361,2286,2196,2123,2084,2082,2114,2162,2191,2169,2063,1909,1775,1695,1657,1629,1613,1608,1571,1470,1360,1293,1248,1172,1096,1067,1066,1061,1063,1037,917,727,564,494,492,538,597,648,684,673,595,518,522,573,600,635,732,823,834,821,815,741,621,575,616,676,767,875,905,848,779,745,737,753,795,850,932,1038,1103,1097,1034,973,941,943,984,1064,1177,1281,1325,1290,1216,1169,1175,1218,1275,1348,1455,1570,1636,1627,1564,1495,1455,1456,1494,1572,1676,1767,1800,1764,1687,1626,1610,1618,1631,1661,1726,1799,1825,1772,1661,1542,1461,1419,1413,1442,1504,1563,1565,1507,1417,1339,1312,1316,1326,1349,1412,1492,1530,1499,1397,1282,1204,1171,1182,1233,1321,1411,1455,1428,1351,1289,1275,1297,1333,1390,1490,1605,1678,1667,1579,1470,1396,1379,1401,1466,1570,1670,1711,1669,1580,1512,1499,1519,1552,1607,1691,1780,1822,1777,1666,1552,1491,1477,1500,1553,1631,1697,1694,1622,1519,1440,1423,1440,1462,1501,1583,1686,1735,1694,1571,1440,1345,1298,1306,1367,1477,1596,1666,1656,1597,1561,1585,1662,1759,1867,1977,2069,2141,2185,2201,2225,2280,2356,2455,2575,2657,2698,2744,2783,2790,2835,2943,3010,3031,3106,3199,3208,3163,3188,3255,3278,3274,3290,3322,3351,3360,3330,3271,3222,3193,3194,3223,3222,3175,3157,3165,3115,3037,3023,3061,3075,3063,3041,3014,2995,2982,2952,2928,},
|
||||
{2323,2303,2309,2339,2378,2397,2375,2310,2216,2141,2110,2126,2174,2227,2251,2224,2138,1998,1857,1778,1752,1733,1702,1664,1615,1530,1410,1308,1265,1231,1164,1120,1124,1123,1089,1036,931,757,586,508,530,588,647,681,681,653,590,507,475,531,608,658,730,829,870,813,745,688,596,522,564,670,768,857,909,860,754,682,674,706,764,838,914,999,1061,1047,965,875,843,876,947,1045,1150,1246,1298,1280,1213,1152,1160,1230,1321,1401,1479,1572,1634,1621,1549,1470,1445,1486,1571,1661,1744,1814,1838,1807,1744,1694,1695,1743,1793,1832,1877,1923,1936,1881,1768,1652,1587,1585,1613,1644,1666,1678,1662,1600,1520,1459,1446,1472,1497,1509,1532,1574,1596,1560,1470,1362,1294,1295,1331,1373,1406,1430,1434,1400,1334,1275,1271,1313,1364,1411,1467,1541,1590,1574,1491,1380,1314,1323,1387,1461,1533,1601,1626,1590,1513,1447,1439,1488,1546,1601,1673,1754,1802,1773,1662,1531,1452,1453,1508,1581,1651,1703,1710,1649,1550,1468,1452,1496,1555,1606,1658,1715,1737,1682,1569,1451,1392,1409,1461,1524,1578,1619,1638,1614,1563,1536,1588,1700,1819,1909,1976,2025,2067,2119,2170,2217,2278,2353,2433,2521,2612,2660,2681,2728,2768,2791,2870,2989,3037,3050,3119,3179,3155,3129,3197,3279,3302,3303,3319,3335,3343,3338,3305,3256,3220,3205,3222,3248,3232,3185,3175,3169,3108,3046,3056,3093,3100,3083,3055,3026,3009,2990,2960,2952,},
|
||||
{1861,1879,1921,1981,2054,2120,2154,2135,2060,1963,1906,1916,1991,2086,2156,2185,2188,2168,2129,2081,2035,1981,1891,1755,1609,1498,1419,1335,1252,1205,1170,1108,1045,1015,979,862,706,591,525,488,497,532,516,434,356,336,340,340,330,318,324,350,363,370,417,481,501,506,560,616,607,595,643,681,659,667,727,758,772,816,849,858,895,957,977,929,828,719,673,731,826,889,913,924,941,954,958,967,1002,1060,1122,1189,1259,1330,1383,1378,1317,1255,1260,1341,1436,1499,1523,1533,1550,1574,1596,1617,1652,1701,1745,1784,1827,1864,1867,1801,1668,1531,1477,1509,1572,1612,1605,1565,1525,1483,1436,1398,1387,1408,1433,1451,1464,1475,1471,1426,1335,1245,1207,1233,1274,1291,1270,1236,1224,1233,1240,1243,1255,1278,1307,1352,1407,1462,1492,1457,1365,1269,1236,1288,1376,1442,1458,1450,1444,1438,1422,1408,1423,1470,1526,1578,1626,1665,1678,1628,1516,1398,1354,1394,1473,1526,1525,1497,1475,1454,1429,1412,1418,1450,1484,1508,1524,1539,1539,1495,1407,1322,1293,1336,1393,1416,1394,1363,1355,1357,1352,1353,1381,1434,1486,1517,1534,1569,1648,1749,1831,1898,1956,2009,2076,2150,2204,2250,2311,2383,2471,2572,2642,2682,2739,2807,2844,2901,3012,3080,3073,3097,3161,3166,3121,3136,3194,3202,3168,3134,3100,3076,3061,3031,2985,2943,2909,2891,2903,2897,2841,2805,2817,2794,2722,2685,2702,2707,2692,2678,2660,2646,2642,2627,2611,},
|
||||
{1817,1797,1827,1894,1993,2101,2179,2199,2139,2026,1922,1873,1900,1980,2075,2155,2222,2274,2297,2276,2209,2121,2027,1926,1801,1659,1537,1460,1403,1337,1290,1288,1287,1227,1112,976,830,677,558,541,586,611,616,603,529,407,313,290,300,312,319,337,388,444,452,412,400,427,439,457,542,627,619,595,635,674,671,703,774,806,821,861,879,852,831,843,855,854,848,832,832,860,876,862,850,874,926,974,989,982,1013,1098,1195,1274,1307,1291,1244,1197,1169,1192,1284,1407,1493,1519,1509,1507,1534,1567,1591,1616,1664,1741,1818,1853,1835,1773,1695,1622,1570,1559,1598,1653,1659,1610,1540,1494,1491,1500,1486,1458,1452,1488,1538,1570,1548,1475,1380,1280,1207,1185,1226,1299,1346,1335,1287,1249,1241,1246,1250,1257,1289,1348,1412,1450,1437,1387,1339,1307,1285,1296,1356,1424,1450,1428,1389,1372,1402,1445,1465,1466,1486,1547,1623,1664,1651,1590,1516,1448,1402,1399,1448,1522,1558,1537,1482,1436,1433,1445,1437,1424,1448,1516,1586,1618,1584,1500,1404,1318,1269,1273,1333,1417,1460,1438,1373,1327,1325,1347,1365,1378,1405,1448,1479,1492,1514,1572,1678,1783,1852,1897,1931,1966,2028,2113,2182,2246,2330,2413,2491,2576,2635,2668,2723,2787,2826,2887,2993,3060,3052,3073,3141,3157,3115,3127,3184,3186,3140,3104,3079,3065,3064,3048,3007,2966,2927,2907,2913,2899,2844,2818,2837,2818,2751,2716,2730,2736,2722,2703,2682,2665,2658,2641,2623,},
|
||||
{1822,1808,1846,1923,2033,2137,2203,2202,2125,2003,1893,1839,1841,1865,1873,1863,1855,1842,1794,1714,1632,1565,1477,1348,1230,1146,1064,967,891,881,914,926,917,903,826,668,505,396,318,284,329,422,496,510,472,420,398,396,381,378,437,527,569,586,625,627,554,519,585,649,661,681,701,678,659,690,725,741,770,814,837,826,789,733,693,693,695,681,681,713,763,800,812,817,859,937,1006,1040,1060,1095,1162,1257,1357,1448,1515,1542,1511,1458,1438,1491,1596,1690,1743,1756,1763,1779,1784,1776,1771,1792,1837,1881,1903,1891,1853,1783,1684,1588,1532,1541,1591,1618,1581,1504,1435,1394,1363,1329,1291,1270,1282,1307,1323,1318,1283,1216,1115,1012,955,972,1054,1134,1165,1155,1147,1157,1173,1189,1209,1250,1324,1401,1449,1469,1476,1464,1424,1385,1378,1424,1505,1564,1567,1538,1526,1552,1584,1597,1597,1614,1661,1720,1765,1776,1757,1698,1600,1490,1412,1407,1459,1505,1493,1441,1389,1352,1318,1277,1241,1243,1299,1374,1424,1439,1417,1356,1258,1157,1116,1162,1271,1361,1390,1369,1354,1369,1397,1435,1497,1590,1708,1802,1852,1892,1948,2030,2151,2279,2370,2425,2465,2498,2548,2622,2687,2747,2835,2911,2937,2978,3058,3084,3049,3070,3134,3125,3061,3056,3092,3076,3032,3008,2996,2987,2972,2927,2864,2808,2764,2748,2770,2769,2723,2707,2725,2692,2619,2594,2625,2646,2647,2647,2645,2645,2651,2650,2658,},
|
||||
|
||||
//{},
|
||||
};
|
||||
//额外找的没吸到
|
||||
const double test[300]={
|
||||
1949,1920,1926,1984,2069,2140,2169,2146,2081,2008,1970,1973,2007,2042,2042,2009,1966,1926,1887,1835,1760,1681,1616,1543,1435,1313,1219,1141,1046,962,944,990,1007,951,860,743,602,492,457,456,437,423,442,453,429,394,368,372,402,418,407,431,490,504,465,466,512,529,539,609,679,663,625,623,614,610,662,713,707,691,726,789,841,850,796,712,649,614,591,591,631,703,771,802,813,835,885,940,979,1011,1075,1187,1308,1380,1389,1362,1352,1368,1400,1452,1530,1621,1680,1692,1668,1658,1687,1726,1746,1761,1801,1879,1949,1952,1872,1758,1654,1578,1538,1529,1550,1588,1596,1548,1467,1398,1370,1364,1353,1341,1349,1386,1418,1394,1310,1216,1160,1139,1139,1155,1181,1209,1213,1177,1123,1095,1117,1162,1196,1209,1241,1319,1405,1436,1401,1330,1276,1251,1245,1263,1311,1382,1433,1441,1413,1392,1400,1415,1413,1401,1419,1496,1575,1586,1510,1401,1309,1250,1225,1226,1266,1333,1375,1357,1303,1259,1258,1284,1310,1333,1379,1459,1528,1526,1451,1358,1297,1270,1266,1284,1322,1372,1398,1375,1327,1307,1349,1426,1497,1542,1587,1651,1722,1777,1828,1893,1973,2072,2167,2220,2246,2271,2297,2334,2408,2491,2550,2610,2677,2715,2748,2833,2907,2910,2927,3004,3041,2994,2970,3014,3042,3019,2991,2974,2959,2943,2907,2850,2794,2756,2739,2752,2767,2740,2710,2722,2712,2644,2596,2611,2628,2618,2599,2577,2559,2552,2537,2521,
|
||||
};
|
||||
//源数据input[0]数据裁剪了一下
|
||||
const double test2[300]= {1821,1696,1626,1587,1570,1571,1547,1462,1358,1296,1257,1183,1093,1045,1024,1008,1019,1027,949,775,609,508,467,479,525,587,641,652,585,504,490,530,553,573,650,737,765,772,790,742,622,546,555,594,672,774,823,786,731,701,693,703,729,769,842,947,1035,1064,1042,1005,976,966,985,1045,1148,1266,1339,1332,1282,1242,1243,1274,1320,1373,1460,1577,1664,1677,1634,1576,1536,1514,1518,1570,1665,1765,1812,1795,1726,1661,1635,1631,1630,1643,1693,1765,1806,1782,1692,1583,1488,1415,1379,1385,1442,1508,1530,1489,1406,1327,1290,1283,1280,1293,1347,1429,1489,1488,1416,1312,1219,1160,1135,1158,1230,1324,1387,1379,1317,1249,1216,1214,1232,1269,1348,1458,1551,1574,1520,1422,1342,1296,1285,1324,1416,1526,1586,1576,1505,1435,1409,1416,1435,1474,1547,1643,1706,1695,1611,1510,1437,1398,1395,1429,1504,1579,1601,1552,1464,1389,1363,1369,1375,1392,1455,1550,1623,1626,1550,1439,1336,1264,1234,1262,1350,1468,1559,1574,1536,1502,1519,1583,1674,1773,1876,1970,2052,2102,2123,2148,2198,2267,2359,2467,2552,2605,2660,2701,2706,2750,2854,2920,2932,3000,3103,3127,3089,3116,3199,3235,3240,3271,3316,3356,3383,3374,3336,3300,3281,3285,3318,3328,3290,3269,3277,3236,3157,3129,3156,3171,3160,3136,3104,3080,3062,3028,2995,
|
||||
};
|
||||
//目标结果
|
||||
const double output[]={
|
||||
1,1,1,
|
||||
0,0,0,
|
||||
};
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN example 1.\n");
|
||||
printf("Train a small ANN to the XOR function using backpropagation.\n");
|
||||
|
||||
/* This will make the neural network initialize differently each run. */
|
||||
/* If you don't get a good result, try again for a different result. */
|
||||
// srand(time(0));
|
||||
|
||||
/* Input and expected out data for the XOR function. */
|
||||
// const double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
// const double output[4] = {0, 1, 1, 0};
|
||||
int i;
|
||||
|
||||
/* New network with 2 inputs,
|
||||
* 1 hidden layer of 2 neurons,
|
||||
* and 1 output. */
|
||||
genann *ann = genann_init(300, 1, 20, 1);
|
||||
|
||||
/* Train on the four labeled data points many times. */
|
||||
for (i = 0; i < 500; ++i) {
|
||||
genann_train(ann, input[0], output + 0, 3);
|
||||
genann_train(ann, input[1], output + 1, 3);
|
||||
genann_train(ann, input[2], output + 2, 3);
|
||||
genann_train(ann, input[3], output + 3, 3);
|
||||
genann_train(ann, input[4], output + 4, 3);
|
||||
genann_train(ann, input[5], output + 5, 3);
|
||||
}
|
||||
|
||||
/* Run the network and see what it predicts. */
|
||||
printf("%f\n",*genann_run(ann, input[0]));
|
||||
printf("%f\n",*genann_run(ann, input[4]));
|
||||
printf("%f\n",*genann_run(ann, test));
|
||||
printf("%f\n",*genann_run(ann, test2));
|
||||
genann_free(ann);
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,276 @@
|
|||
/*
|
||||
* GENANN - Minimal C Artificial Neural Network
|
||||
*
|
||||
* Copyright (c) 2015-2018 Lewis Van Winkle
|
||||
*
|
||||
* http://CodePlea.com
|
||||
*
|
||||
* This software is provided 'as-is', without any express or implied
|
||||
* warranty. In no event will the authors be held liable for any damages
|
||||
* arising from the use of this software.
|
||||
*
|
||||
* Permission is granted to anyone to use this software for any purpose,
|
||||
* including commercial applications, and to alter it and redistribute it
|
||||
* freely, subject to the following restrictions:
|
||||
*
|
||||
* 1. The origin of this software must not be misrepresented; you must not
|
||||
* claim that you wrote the original software. If you use this software
|
||||
* in a product, an acknowledgement in the product documentation would be
|
||||
* appreciated but is not required.
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be
|
||||
* misrepresented as being the original software.
|
||||
* 3. This notice may not be removed or altered from any source distribution.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "genann.h"
|
||||
#include "minctest.h"
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
|
||||
|
||||
void basic() {
|
||||
genann *ann = genann_init(1, 0, 0, 1);
|
||||
|
||||
lequal(ann->total_weights, 2);
|
||||
double a;
|
||||
|
||||
|
||||
a = 0;
|
||||
ann->weight[0] = 0;
|
||||
ann->weight[1] = 0;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 1;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 11;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 1;
|
||||
ann->weight[0] = 1;
|
||||
ann->weight[1] = 1;
|
||||
lfequal(0.5, *genann_run(ann, &a));
|
||||
|
||||
a = 10;
|
||||
ann->weight[0] = 1;
|
||||
ann->weight[1] = 1;
|
||||
lfequal(1.0, *genann_run(ann, &a));
|
||||
|
||||
a = -10;
|
||||
lfequal(0.0, *genann_run(ann, &a));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void xor() {
|
||||
genann *ann = genann_init(2, 1, 2, 1);
|
||||
ann->activation_hidden = genann_act_threshold;
|
||||
ann->activation_output = genann_act_threshold;
|
||||
|
||||
lequal(ann->total_weights, 9);
|
||||
|
||||
/* First hidden. */
|
||||
ann->weight[0] = .5;
|
||||
ann->weight[1] = 1;
|
||||
ann->weight[2] = 1;
|
||||
|
||||
/* Second hidden. */
|
||||
ann->weight[3] = 1;
|
||||
ann->weight[4] = 1;
|
||||
ann->weight[5] = 1;
|
||||
|
||||
/* Output. */
|
||||
ann->weight[6] = .5;
|
||||
ann->weight[7] = 1;
|
||||
ann->weight[8] = -1;
|
||||
|
||||
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 0};
|
||||
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void backprop() {
|
||||
genann *ann = genann_init(1, 0, 0, 1);
|
||||
|
||||
double input, output;
|
||||
input = .5;
|
||||
output = 1;
|
||||
|
||||
double first_try = *genann_run(ann, &input);
|
||||
genann_train(ann, &input, &output, .5);
|
||||
double second_try = *genann_run(ann, &input);
|
||||
lok(fabs(first_try - output) > fabs(second_try - output));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void train_and() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 0, 0, 1};
|
||||
|
||||
genann *ann = genann_init(2, 0, 0, 1);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 50; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, .8);
|
||||
}
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
void train_or() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 1};
|
||||
|
||||
genann *ann = genann_init(2, 0, 0, 1);
|
||||
genann_randomize(ann);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 50; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, .8);
|
||||
}
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void train_xor() {
|
||||
double input[4][2] = {{0, 0}, {0, 1}, {1, 0}, {1, 1}};
|
||||
double output[4] = {0, 1, 1, 0};
|
||||
|
||||
genann *ann = genann_init(2, 1, 2, 1);
|
||||
|
||||
int i, j;
|
||||
|
||||
for (i = 0; i < 500; ++i) {
|
||||
for (j = 0; j < 4; ++j) {
|
||||
genann_train(ann, input[j], output + j, 3);
|
||||
}
|
||||
/* printf("%1.2f ", xor_score(ann)); */
|
||||
}
|
||||
|
||||
ann->activation_output = genann_act_threshold;
|
||||
lfequal(output[0], *genann_run(ann, input[0]));
|
||||
lfequal(output[1], *genann_run(ann, input[1]));
|
||||
lfequal(output[2], *genann_run(ann, input[2]));
|
||||
lfequal(output[3], *genann_run(ann, input[3]));
|
||||
|
||||
genann_free(ann);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void persist() {
|
||||
genann *first = genann_init(1000, 5, 50, 10);
|
||||
|
||||
FILE *out = fopen("persist.txt", "w");
|
||||
genann_write(first, out);
|
||||
fclose(out);
|
||||
|
||||
|
||||
FILE *in = fopen("persist.txt", "r");
|
||||
genann *second = genann_read(in);
|
||||
fclose(in);
|
||||
|
||||
lequal(first->inputs, second->inputs);
|
||||
lequal(first->hidden_layers, second->hidden_layers);
|
||||
lequal(first->hidden, second->hidden);
|
||||
lequal(first->outputs, second->outputs);
|
||||
lequal(first->total_weights, second->total_weights);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < first->total_weights; ++i) {
|
||||
lok(first->weight[i] == second->weight[i]);
|
||||
}
|
||||
|
||||
genann_free(first);
|
||||
genann_free(second);
|
||||
}
|
||||
|
||||
|
||||
void copy() {
|
||||
genann *first = genann_init(1000, 5, 50, 10);
|
||||
|
||||
genann *second = genann_copy(first);
|
||||
|
||||
lequal(first->inputs, second->inputs);
|
||||
lequal(first->hidden_layers, second->hidden_layers);
|
||||
lequal(first->hidden, second->hidden);
|
||||
lequal(first->outputs, second->outputs);
|
||||
lequal(first->total_weights, second->total_weights);
|
||||
|
||||
int i;
|
||||
for (i = 0; i < first->total_weights; ++i) {
|
||||
lfequal(first->weight[i], second->weight[i]);
|
||||
}
|
||||
|
||||
genann_free(first);
|
||||
genann_free(second);
|
||||
}
|
||||
|
||||
|
||||
void sigmoid() {
|
||||
double i = -20;
|
||||
const double max = 20;
|
||||
const double d = .0001;
|
||||
|
||||
while (i < max) {
|
||||
lfequal(genann_act_sigmoid(NULL, i), genann_act_sigmoid_cached(NULL, i));
|
||||
i += d;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
printf("GENANN TEST SUITE\n");
|
||||
|
||||
srand(100); //Repeatable test results.
|
||||
|
||||
lrun("basic", basic);
|
||||
lrun("xor", xor);
|
||||
lrun("backprop", backprop);
|
||||
lrun("train and", train_and);
|
||||
lrun("train or", train_or);
|
||||
lrun("train xor", train_xor);
|
||||
lrun("persist", persist);
|
||||
lrun("copy", copy);
|
||||
lrun("sigmoid", sigmoid);
|
||||
|
||||
lresults();
|
||||
|
||||
return lfails != 0;
|
||||
}
|
Loading…
Reference in New Issue