uboot/u-boot-stm32mp-2020.01/arch/arm/cpu/armv8/fsl-layerscape/doc/README.lsch3

401 lines
16 KiB
Plaintext

#
# Copyright 2014-2015 Freescale Semiconductor
#
# SPDX-License-Identifier: GPL-2.0+
#
Freescale LayerScape with Chassis Generation 3
This architecture supports Freescale ARMv8 SoCs with Chassis generation 3,
for example LS2080A.
DDR Layout
============
Entire DDR region splits into two regions.
- Region 1 is at address 0x8000_0000 to 0xffff_ffff.
- Region 2 is at 0x80_8000_0000 to the top of total memory,
for example 16GB, 0x83_ffff_ffff.
All DDR memory is marked as cache-enabled.
When MC and Debug server is enabled, they carve 512MB away from the high
end of DDR. For example, if the total DDR is 16GB, it shrinks to 15.5GB
with MC and Debug server enabled. Linux only sees 15.5GB.
The reserved 512MB layout looks like
+---------------+ <-- top/end of memory
| 256MB | debug server
+---------------+
| 256MB | MC
+---------------+
| ... |
MC requires the memory to be aligned with 512MB, so even debug server is
not enabled, 512MB is reserved, not 256MB.
Flash Layout
============
(1) A typical layout of various images (including Linux and other firmware images)
is shown below considering a 32MB NOR flash device present on most
pre-silicon platforms (simulator and emulator):
-------------------------
| FIT Image |
| (linux + DTB + RFS) |
------------------------- ----> 0x0120_0000
| Debug Server FW |
------------------------- ----> 0x00C0_0000
| AIOP FW |
------------------------- ----> 0x0070_0000
| MC FW |
------------------------- ----> 0x006C_0000
| MC DPL Blob |
------------------------- ----> 0x0020_0000
| BootLoader + Env|
------------------------- ----> 0x0000_1000
| PBI |
------------------------- ----> 0x0000_0080
| RCW |
------------------------- ----> 0x0000_0000
32-MB NOR flash layout for pre-silicon platforms (simulator and emulator)
(2) A typical layout of various images (including Linux and other firmware images)
is shown below considering a 128MB NOR flash device present on QDS and RDB
boards:
----------------------------------------- ----> 0x5_8800_0000 ---
| .. Unused .. (7M) | |
----------------------------------------- ----> 0x5_8790_0000 |
| FIT Image (linux + DTB + RFS) (40M) | |
----------------------------------------- ----> 0x5_8510_0000 |
| PHY firmware (2M) | |
----------------------------------------- ----> 0x5_84F0_0000 | 64K
| Debug Server FW (2M) | | Alt
----------------------------------------- ----> 0x5_84D0_0000 | Bank
| AIOP FW (4M) | |
----------------------------------------- ----> 0x5_8490_0000 (vbank4)
| MC DPC Blob (1M) | |
----------------------------------------- ----> 0x5_8480_0000 |
| MC DPL Blob (1M) | |
----------------------------------------- ----> 0x5_8470_0000 |
| MC FW (4M) | |
----------------------------------------- ----> 0x5_8430_0000 |
| BootLoader Environment (1M) | |
----------------------------------------- ----> 0x5_8420_0000 |
| BootLoader (1M) | |
----------------------------------------- ----> 0x5_8410_0000 |
| RCW and PBI (1M) | |
----------------------------------------- ----> 0x5_8400_0000 ---
| .. Unused .. (7M) | |
----------------------------------------- ----> 0x5_8390_0000 |
| FIT Image (linux + DTB + RFS) (40M) | |
----------------------------------------- ----> 0x5_8110_0000 |
| PHY firmware (2M) | |
----------------------------------------- ----> 0x5_80F0_0000 | 64K
| Debug Server FW (2M) | | Bank
----------------------------------------- ----> 0x5_80D0_0000 |
| AIOP FW (4M) | |
----------------------------------------- ----> 0x5_8090_0000 (vbank0)
| MC DPC Blob (1M) | |
----------------------------------------- ----> 0x5_8080_0000 |
| MC DPL Blob (1M) | |
----------------------------------------- ----> 0x5_8070_0000 |
| MC FW (4M) | |
----------------------------------------- ----> 0x5_8030_0000 |
| BootLoader Environment (1M) | |
----------------------------------------- ----> 0x5_8020_0000 |
| BootLoader (1M) | |
----------------------------------------- ----> 0x5_8010_0000 |
| RCW and PBI (1M) | |
----------------------------------------- ----> 0x5_8000_0000 ---
128-MB NOR flash layout for QDS and RDB boards
Environment Variables
=====================
mcboottimeout: MC boot timeout in milliseconds. If this variable is not defined
the value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be assumed.
mcmemsize: MC DRAM block size in hex. If this variable is not defined, the value
CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be assumed.
mcinitcmd: This environment variable is defined to initiate MC and DPL deployment
from the location where it is stored(NOR, NAND, SD, SATA, USB)during
u-boot booting.If this variable is not defined then MC_BOOT_ENV_VAR
will be null and MC will not be booted and DPL will not be applied
during U-boot booting.However the MC, DPC and DPL can be applied from
console independently.
The variable needs to be set from the console once and then on
rebooting the parameters set in the variable will automatically be
executed. The commmand is demostrated taking an example of mc boot
using NOR Flash i.e. MC, DPL, and DPC is stored in the NOR flash:
cp.b 0xa0000000 0x580300000 $filesize
cp.b 0x80000000 0x580800000 $filesize
cp.b 0x90000000 0x580700000 $filesize
setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000'
If only linux is to be booted then the mcinitcmd environment should be set as
setenv mcinitcmd 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
Here the addresses 0xa0000000, 0x80000000, 0x80000000 are of DDR to where
MC binary, DPC binary and DPL binary are stored and 0x580300000, 0x580800000
and 0x580700000 are addresses in NOR where these are copied. It is to be
noted that these addresses in 'fsl_mc start mc 0x580300000 0x580800000;fsl_mc apply DPL 0x580700000'
can be replaced with the addresses of DDR to
which these will be copied in case of these binaries being stored in other
devices like SATA, USB, NAND, SD etc.
Booting from NAND
-------------------
Booting from NAND requires two images, RCW and u-boot-with-spl.bin.
The difference between NAND boot RCW image and NOR boot image is the PBI
command sequence. Below is one example for PBI commands for LS2085AQDS which
uses NAND device with 2KB/page, block size 128KB.
1) CCSR 4-byte write to 0x00e00404, data=0x00000000
2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
The above two commands set bootloc register to 0x00000000_1800a000 where
the u-boot code will be running in OCRAM.
3) Block Copy: SRC=0x0107, SRC_ADDR=0x00020000, DEST_ADDR=0x1800a000,
BLOCK_SIZE=0x00014000
This command copies u-boot image from NAND device into OCRAM. The values need
to adjust accordingly.
SRC should match the cfg_rcw_src, the reset config pins. It depends
on the NAND device. See reference manual for cfg_rcw_src.
SRC_ADDR is the offset of u-boot-with-spl.bin image in NAND device. In
the example above, 128KB. For easy maintenance, we put it at
the beginning of next block from RCW.
DEST_ADDR is fixed at 0x1800a000, matching bootloc set above.
BLOCK_SIZE is the size to be copied by PBI.
RCW image should be written to the beginning of NAND device. Example of using
u-boot command
nand write <rcw image in memory> 0 <size of rcw image>
To form the NAND image, build u-boot with NAND config, for example,
ls2080aqds_nand_defconfig. The image needed is u-boot-with-spl.bin.
The u-boot image should be written to match SRC_ADDR, in above example 0x20000.
nand write <u-boot image in memory> 200000 <size of u-boot image>
With these two images in NAND device, the board can boot from NAND.
Another example for LS2085ARDB boards,
1) CCSR 4-byte write to 0x00e00404, data=0x00000000
2) CCSR 4-byte write to 0x00e00400, data=0x1800a000
3) Block Copy: SRC=0x0119, SRC_ADDR=0x00080000, DEST_ADDR=0x1800a000,
BLOCK_SIZE=0x00014000
nand write <rcw image in memory> 0 <size of rcw image>
nand write <u-boot image in memory> 80000 <size of u-boot image>
Notice the difference from QDS is SRC, SRC_ADDR and the offset of u-boot image
to match board NAND device with 4KB/page, block size 512KB.
Note, LS2088A and LS1088A don't support booting from NAND.
Booting from SD/eMMC
-------------------
Booting from SD/eMMC requires two images, RCW and u-boot-with-spl.bin.
The difference between SD boot RCW image and QSPI-NOR boot image is the
PBI command sequence. Below is one example for PBI commands for RDB
and QDS which uses SD device with block size 512. Block location can be
calculated by dividing offset with block size.
1) Block Copy: SRC=0x0040, SRC_ADDR=0x00100000, DEST_ADDR=0x1800a000,
BLOCK_SIZE=0x00016000
This command copies u-boot image from SD device into OCRAM. The values
need to adjust accordingly for SD/eMMC
SRC should match the cfg_rcw_src, the reset config pins.
The value for source(SRC) can be 0x0040 or 0x0041
depending upon SD or eMMC.
SRC_ADDR is the offset of u-boot-with-spl.bin image in SD device.
In the example above, 1MB. This is same as QSPI-NOR.
DEST_ADDR is configured at 0x1800a000, matching bootloc set above.
BLOCK_SIZE is the size to be copied by PBI.
2) CCSR 4-byte write to 0x01e00404, data=0x00000000
3) CCSR 4-byte write to 0x01e00400, data=0x1800a000
The above two commands set bootloc register to 0x00000000_1800a000 where
the u-boot code will be running in OCRAM.
RCW image should be written at 8th block of device(SD/eMMC). Example of
using u-boot command
mmc erase 0x8 0x10
mmc write <rcw image in memory> 0x8 <size of rcw in block count typical value=10>
To form the SD-Boot image, build u-boot with SD config, for example,
ls1088ardb_sdcard_qspi_defconfig. The image needed is u-boot-with-spl.bin.
The u-boot image should be written to match SRC_ADDR, in above example
offset 0x100000 in other work it means block location 0x800
mmc erase 0x800 0x1800
mmc write <u-boot image in memory> 0x800 <size of u-boot image in block count>
With these two images in SD/eMMC device, the board can boot from SD/eMMC.
MMU Translation Tables
======================
(1) Early MMU Tables:
Level 0 Level 1 Level 2
------------------ ------------------ ------------------
| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
------------------ ------------------ ------------------
| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
------------------ | ------------------ ------------------
| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
------------------ | ------------------ ------------------
| | 0x00_c000_0000 | | 0x00_0060_0000 |
| ------------------ ------------------
| | 0x01_0000_0000 | | 0x00_0080_0000 |
| ------------------ ------------------
| ... ...
| ------------------
| | 0x05_8000_0000 | --|
| ------------------ |
| | 0x05_c000_0000 | |
| ------------------ |
| ... |
| ------------------ | ------------------
|--> | 0x80_0000_0000 | |-> | 0x00_3000_0000 |
------------------ ------------------
| 0x80_4000_0000 | | 0x00_3020_0000 |
------------------ ------------------
| 0x80_8000_0000 | | 0x00_3040_0000 |
------------------ ------------------
| 0x80_c000_0000 | | 0x00_3060_0000 |
------------------ ------------------
| 0x81_0000_0000 | | 0x00_3080_0000 |
------------------ ------------------
... ...
(2) Final MMU Tables:
Level 0 Level 1 Level 2
------------------ ------------------ ------------------
| 0x00_0000_0000 | -----> | 0x00_0000_0000 | -----> | 0x00_0000_0000 |
------------------ ------------------ ------------------
| 0x80_0000_0000 | --| | 0x00_4000_0000 | | 0x00_0020_0000 |
------------------ | ------------------ ------------------
| invalid | | | 0x00_8000_0000 | | 0x00_0040_0000 |
------------------ | ------------------ ------------------
| | 0x00_c000_0000 | | 0x00_0060_0000 |
| ------------------ ------------------
| | 0x01_0000_0000 | | 0x00_0080_0000 |
| ------------------ ------------------
| ... ...
| ------------------
| | 0x08_0000_0000 | --|
| ------------------ |
| | 0x08_4000_0000 | |
| ------------------ |
| ... |
| ------------------ | ------------------
|--> | 0x80_0000_0000 | |--> | 0x08_0000_0000 |
------------------ ------------------
| 0x80_4000_0000 | | 0x08_0020_0000 |
------------------ ------------------
| 0x80_8000_0000 | | 0x08_0040_0000 |
------------------ ------------------
| 0x80_c000_0000 | | 0x08_0060_0000 |
------------------ ------------------
| 0x81_0000_0000 | | 0x08_0080_0000 |
------------------ ------------------
... ...
DPAA2 commands to manage Management Complex (MC)
------------------------------------------------
DPAA2 commands has been introduced to manage Management Complex
(MC). These commands are used to start mc, aiop and apply DPL
from u-boot command prompt.
Please note Management complex Firmware(MC), DPL and DPC are no
more deployed during u-boot boot-sequence.
Commands:
a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
c) fsl_mc start aiop <FW_addr> - Start AIOP
How to use commands :-
1. Command sequence for u-boot ethernet:
a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
b) DPMAC net-devices are now available for use
Example-
Assumption: MC firmware, DPL and DPC dtb is already programmed
on NOR flash.
=> fsl_mc start mc 580300000 580800000
=> setenv ethact DPMAC1@xgmii
=> ping $serverip
2. Command sequence for Linux boot:
a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
b) fsl_mc apply DPL <DPL_addr> - Apply DPL file
c) No DPMAC net-devices are available for use in u-boot
d) boot Linux
Example-
Assumption: MC firmware, DPL and DPC dtb is already programmed
on NOR flash.
=> fsl_mc start mc 580300000 580800000
=> setenv ethact DPMAC1@xgmii
=> tftp a0000000 kernel.itb
=> fsl_mc apply dpl 580700000
=> bootm a0000000
3. Command sequence for AIOP boot:
a) fsl_mc start mc <FW_addr> <DPC_addr> - Start Management Complex
b) fsl_mc start aiop <FW_addr> - Start AIOP
c) fsl_mc apply DPL <DPL_addr> - Apply DPL file
d) No DPMAC net-devices are availabe for use in u-boot
Please note actual AIOP start will happen during DPL parsing of
Management complex
Example-
Assumption: MC firmware, DPL, DPC dtb and AIOP firmware is already
programmed on NOR flash.
=> fsl_mc start mc 580300000 580800000
=> fsl_mc start aiop 0x580900000
=> setenv ethact DPMAC1@xgmii
=> fsl_mc apply dpl 580700000
Errata A009635
---------------
If the core runs at higher than x3 speed of the platform, there is
possiblity about sev instruction to getting missed by other cores.
This is because of SoC Run Control block may not able to sample
the EVENTI(Sev) signals.
Workaround: Configure Run Control and EPU to periodically send out EVENTI signals to
wake up A57 cores
Errata workaround uses Env variable "a009635_interval_val". It uses decimal
value.
- Default value of env variable is platform clock (MHz)
- User can modify default value by updating the env variable
setenv a009635_interval_val 600; saveenv;
It configure platform clock as 600 MHz
- Env variable as 0 signifies no workaround