uboot/u-boot-stm32mp-2020.01/board/freescale/t1040qds/eth.c

591 lines
14 KiB
C
Raw Normal View History

2024-01-10 06:52:34 +00:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2013 Freescale Semiconductor, Inc.
*/
/*
* The RGMII PHYs are provided by the two on-board PHY connected to
* dTSEC instances 4 and 5. The SGMII PHYs are provided by one on-board
* PHY or by the standard four-port SGMII riser card (VSC).
*/
#include <common.h>
#include <netdev.h>
#include <asm/fsl_serdes.h>
#include <asm/immap_85xx.h>
#include <fm_eth.h>
#include <fsl_mdio.h>
#include <malloc.h>
#include <fsl_dtsec.h>
#include <vsc9953.h>
#include "../common/fman.h"
#include "../common/qixis.h"
#include "t1040qds_qixis.h"
#ifdef CONFIG_FMAN_ENET
/* - In T1040 there are only 8 SERDES lanes, spread across 2 SERDES banks.
* Bank 1 -> Lanes A, B, C, D
* Bank 2 -> Lanes E, F, G, H
*/
/* Mapping of 8 SERDES lanes to T1040 QDS board slots. A value of '0' here
* means that the mapping must be determined dynamically, or that the lane
* maps to something other than a board slot.
*/
static u8 lane_to_slot[] = {
0, 0, 0, 0, 0, 0, 0, 0
};
/* On the Vitesse VSC8234XHG SGMII riser card there are 4 SGMII PHYs
* housed.
*/
static int riser_phy_addr[] = {
CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR,
CONFIG_SYS_FM1_DTSEC2_RISER_PHY_ADDR,
CONFIG_SYS_FM1_DTSEC3_RISER_PHY_ADDR,
CONFIG_SYS_FM1_DTSEC4_RISER_PHY_ADDR,
};
/* Slot2 does not have EMI connections */
#define EMI_NONE 0xFFFFFFFF
#define EMI1_RGMII0 0
#define EMI1_RGMII1 1
#define EMI1_SLOT1 2
#define EMI1_SLOT3 3
#define EMI1_SLOT4 4
#define EMI1_SLOT5 5
#define EMI1_SLOT6 6
#define EMI1_SLOT7 7
#define EMI2 8
static int mdio_mux[NUM_FM_PORTS];
static const char * const mdio_names[] = {
"T1040_QDS_MDIO0",
"T1040_QDS_MDIO1",
"T1040_QDS_MDIO2",
"T1040_QDS_MDIO3",
"T1040_QDS_MDIO4",
"T1040_QDS_MDIO5",
"T1040_QDS_MDIO6",
"T1040_QDS_MDIO7",
};
struct t1040_qds_mdio {
u8 muxval;
struct mii_dev *realbus;
};
static const char *t1040_qds_mdio_name_for_muxval(u8 muxval)
{
return mdio_names[muxval];
}
struct mii_dev *mii_dev_for_muxval(u8 muxval)
{
struct mii_dev *bus;
const char *name = t1040_qds_mdio_name_for_muxval(muxval);
if (!name) {
printf("No bus for muxval %x\n", muxval);
return NULL;
}
bus = miiphy_get_dev_by_name(name);
if (!bus) {
printf("No bus by name %s\n", name);
return NULL;
}
return bus;
}
static void t1040_qds_mux_mdio(u8 muxval)
{
u8 brdcfg4;
if (muxval <= 7) {
brdcfg4 = QIXIS_READ(brdcfg[4]);
brdcfg4 &= ~BRDCFG4_EMISEL_MASK;
brdcfg4 |= (muxval << BRDCFG4_EMISEL_SHIFT);
QIXIS_WRITE(brdcfg[4], brdcfg4);
}
}
static int t1040_qds_mdio_read(struct mii_dev *bus, int addr, int devad,
int regnum)
{
struct t1040_qds_mdio *priv = bus->priv;
t1040_qds_mux_mdio(priv->muxval);
return priv->realbus->read(priv->realbus, addr, devad, regnum);
}
static int t1040_qds_mdio_write(struct mii_dev *bus, int addr, int devad,
int regnum, u16 value)
{
struct t1040_qds_mdio *priv = bus->priv;
t1040_qds_mux_mdio(priv->muxval);
return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
}
static int t1040_qds_mdio_reset(struct mii_dev *bus)
{
struct t1040_qds_mdio *priv = bus->priv;
return priv->realbus->reset(priv->realbus);
}
static int t1040_qds_mdio_init(char *realbusname, u8 muxval)
{
struct t1040_qds_mdio *pmdio;
struct mii_dev *bus = mdio_alloc();
if (!bus) {
printf("Failed to allocate t1040_qds MDIO bus\n");
return -1;
}
pmdio = malloc(sizeof(*pmdio));
if (!pmdio) {
printf("Failed to allocate t1040_qds private data\n");
free(bus);
return -1;
}
bus->read = t1040_qds_mdio_read;
bus->write = t1040_qds_mdio_write;
bus->reset = t1040_qds_mdio_reset;
strcpy(bus->name, t1040_qds_mdio_name_for_muxval(muxval));
pmdio->realbus = miiphy_get_dev_by_name(realbusname);
if (!pmdio->realbus) {
printf("No bus with name %s\n", realbusname);
free(bus);
free(pmdio);
return -1;
}
pmdio->muxval = muxval;
bus->priv = pmdio;
return mdio_register(bus);
}
/*
* Initialize the lane_to_slot[] array.
*
* On the T1040QDS board the mapping is controlled by ?? register.
*/
static void initialize_lane_to_slot(void)
{
ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
int serdes1_prtcl = (in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS1_PRTCL)
>> FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
QIXIS_WRITE(cms[0], 0x07);
switch (serdes1_prtcl) {
case 0x60:
case 0x66:
case 0x67:
case 0x69:
lane_to_slot[1] = 7;
lane_to_slot[2] = 6;
lane_to_slot[3] = 5;
break;
case 0x86:
lane_to_slot[1] = 7;
lane_to_slot[2] = 7;
lane_to_slot[3] = 7;
break;
case 0x87:
lane_to_slot[1] = 7;
lane_to_slot[2] = 7;
lane_to_slot[3] = 7;
lane_to_slot[7] = 7;
break;
case 0x89:
lane_to_slot[1] = 7;
lane_to_slot[2] = 7;
lane_to_slot[3] = 7;
lane_to_slot[6] = 7;
lane_to_slot[7] = 7;
break;
case 0x8d:
lane_to_slot[1] = 7;
lane_to_slot[2] = 7;
lane_to_slot[3] = 7;
lane_to_slot[5] = 3;
lane_to_slot[6] = 3;
lane_to_slot[7] = 3;
break;
case 0x8F:
case 0x85:
lane_to_slot[1] = 7;
lane_to_slot[2] = 6;
lane_to_slot[3] = 5;
lane_to_slot[6] = 3;
lane_to_slot[7] = 3;
break;
case 0xA5:
lane_to_slot[1] = 7;
lane_to_slot[6] = 3;
lane_to_slot[7] = 3;
break;
case 0xA7:
lane_to_slot[1] = 7;
lane_to_slot[2] = 6;
lane_to_slot[3] = 5;
lane_to_slot[7] = 7;
break;
case 0xAA:
lane_to_slot[1] = 7;
lane_to_slot[6] = 7;
lane_to_slot[7] = 7;
break;
case 0x40:
lane_to_slot[2] = 7;
lane_to_slot[3] = 7;
break;
default:
printf("qds: Fman: Unsupported SerDes Protocol 0x%02x\n",
serdes1_prtcl);
break;
}
}
/*
* Given the following ...
*
* 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
* compatible string and 'addr' physical address)
*
* 2) An Fman port
*
* ... update the phy-handle property of the Ethernet node to point to the
* right PHY. This assumes that we already know the PHY for each port.
*
* The offset of the Fman Ethernet node is also passed in for convenience, but
* it is not used, and we recalculate the offset anyway.
*
* Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
* Inside the Fman, "ports" are things that connect to MACs. We only call them
* ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
* and ports are the same thing.
*
*/
void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
enum fm_port port, int offset)
{
phy_interface_t intf = fm_info_get_enet_if(port);
char phy[16];
/* The RGMII PHY is identified by the MAC connected to it */
if (intf == PHY_INTERFACE_MODE_RGMII) {
sprintf(phy, "rgmii_phy%u", port == FM1_DTSEC4 ? 1 : 2);
fdt_set_phy_handle(fdt, compat, addr, phy);
}
/* The SGMII PHY is identified by the MAC connected to it */
if (intf == PHY_INTERFACE_MODE_SGMII) {
int lane = serdes_get_first_lane(FSL_SRDS_1, SGMII_FM1_DTSEC1
+ port);
u8 slot;
if (lane < 0)
return;
slot = lane_to_slot[lane];
if (slot) {
/* Slot housing a SGMII riser card */
sprintf(phy, "phy_s%x_%02x", slot,
(fm_info_get_phy_address(port - FM1_DTSEC1)-
CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR + 1));
fdt_set_phy_handle(fdt, compat, addr, phy);
}
}
}
void fdt_fixup_board_enet(void *fdt)
{
int i, lane, idx;
for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
idx = i - FM1_DTSEC1;
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_SGMII:
lane = serdes_get_first_lane(FSL_SRDS_1,
SGMII_FM1_DTSEC1 + idx);
if (lane < 0)
break;
switch (mdio_mux[i]) {
case EMI1_SLOT3:
fdt_status_okay_by_alias(fdt, "emi1_slot3");
break;
case EMI1_SLOT5:
fdt_status_okay_by_alias(fdt, "emi1_slot5");
break;
case EMI1_SLOT6:
fdt_status_okay_by_alias(fdt, "emi1_slot6");
break;
case EMI1_SLOT7:
fdt_status_okay_by_alias(fdt, "emi1_slot7");
break;
}
break;
case PHY_INTERFACE_MODE_RGMII:
if (i == FM1_DTSEC4)
fdt_status_okay_by_alias(fdt, "emi1_rgmii0");
if (i == FM1_DTSEC5)
fdt_status_okay_by_alias(fdt, "emi1_rgmii1");
break;
default:
break;
}
}
}
#endif /* #ifdef CONFIG_FMAN_ENET */
static void set_brdcfg9_for_gtx_clk(void)
{
u8 brdcfg9;
brdcfg9 = QIXIS_READ(brdcfg[9]);
/* Initializing EPHY2 clock to RGMII mode */
brdcfg9 &= ~(BRDCFG9_EPHY2_MASK);
brdcfg9 |= (BRDCFG9_EPHY2_VAL);
QIXIS_WRITE(brdcfg[9], brdcfg9);
}
void t1040_handle_phy_interface_sgmii(int i)
{
int lane, idx, slot;
idx = i - FM1_DTSEC1;
lane = serdes_get_first_lane(FSL_SRDS_1,
SGMII_FM1_DTSEC1 + idx);
if (lane < 0)
return;
slot = lane_to_slot[lane];
switch (slot) {
case 1:
mdio_mux[i] = EMI1_SLOT1;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
case 3:
if (FM1_DTSEC4 == i)
fm_info_set_phy_address(i, riser_phy_addr[0]);
if (FM1_DTSEC5 == i)
fm_info_set_phy_address(i, riser_phy_addr[1]);
mdio_mux[i] = EMI1_SLOT3;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
case 4:
mdio_mux[i] = EMI1_SLOT4;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
case 5:
/* Slot housing a SGMII riser card? */
fm_info_set_phy_address(i, riser_phy_addr[0]);
mdio_mux[i] = EMI1_SLOT5;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
case 6:
/* Slot housing a SGMII riser card? */
fm_info_set_phy_address(i, riser_phy_addr[0]);
mdio_mux[i] = EMI1_SLOT6;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
case 7:
if (FM1_DTSEC1 == i)
fm_info_set_phy_address(i, riser_phy_addr[0]);
if (FM1_DTSEC2 == i)
fm_info_set_phy_address(i, riser_phy_addr[1]);
if (FM1_DTSEC3 == i)
fm_info_set_phy_address(i, riser_phy_addr[2]);
if (FM1_DTSEC5 == i)
fm_info_set_phy_address(i, riser_phy_addr[3]);
mdio_mux[i] = EMI1_SLOT7;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
break;
default:
break;
}
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
}
void t1040_handle_phy_interface_rgmii(int i)
{
fm_info_set_phy_address(i, i == FM1_DTSEC5 ?
CONFIG_SYS_FM1_DTSEC5_PHY_ADDR :
CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
mdio_mux[i] = (i == FM1_DTSEC5) ? EMI1_RGMII1 :
EMI1_RGMII0;
fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
}
int board_eth_init(bd_t *bis)
{
#ifdef CONFIG_FMAN_ENET
struct memac_mdio_info memac_mdio_info;
unsigned int i;
#ifdef CONFIG_VSC9953
int lane;
int phy_addr;
phy_interface_t phy_int;
struct mii_dev *bus;
#endif
printf("Initializing Fman\n");
set_brdcfg9_for_gtx_clk();
initialize_lane_to_slot();
/* Initialize the mdio_mux array so we can recognize empty elements */
for (i = 0; i < NUM_FM_PORTS; i++)
mdio_mux[i] = EMI_NONE;
memac_mdio_info.regs =
(struct memac_mdio_controller *)CONFIG_SYS_FM1_DTSEC_MDIO_ADDR;
memac_mdio_info.name = DEFAULT_FM_MDIO_NAME;
/* Register the real 1G MDIO bus */
fm_memac_mdio_init(bis, &memac_mdio_info);
/* Register the muxing front-ends to the MDIO buses */
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII0);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII1);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT1);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT3);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT4);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT5);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT6);
t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT7);
/*
* Program on board RGMII PHY addresses. If the SGMII Riser
* card used, we'll override the PHY address later. For any DTSEC that
* is RGMII, we'll also override its PHY address later. We assume that
* DTSEC4 and DTSEC5 are used for RGMII.
*/
fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
fm_info_set_phy_address(FM1_DTSEC5, CONFIG_SYS_FM1_DTSEC5_PHY_ADDR);
for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
switch (fm_info_get_enet_if(i)) {
case PHY_INTERFACE_MODE_QSGMII:
fm_info_set_mdio(i, NULL);
break;
case PHY_INTERFACE_MODE_SGMII:
t1040_handle_phy_interface_sgmii(i);
break;
case PHY_INTERFACE_MODE_RGMII:
/* Only DTSEC4 and DTSEC5 can be routed to RGMII */
t1040_handle_phy_interface_rgmii(i);
break;
default:
break;
}
}
#ifdef CONFIG_VSC9953
for (i = 0; i < VSC9953_MAX_PORTS; i++) {
lane = -1;
phy_addr = 0;
phy_int = PHY_INTERFACE_MODE_NONE;
switch (i) {
case 0:
case 1:
case 2:
case 3:
lane = serdes_get_first_lane(FSL_SRDS_1, QSGMII_SW1_A);
/* PHYs connected over QSGMII */
if (lane >= 0) {
phy_addr = CONFIG_SYS_FM1_QSGMII21_PHY_ADDR +
i;
phy_int = PHY_INTERFACE_MODE_QSGMII;
break;
}
lane = serdes_get_first_lane(FSL_SRDS_1,
SGMII_SW1_MAC1 + i);
if (lane < 0)
break;
/* PHYs connected over QSGMII */
if (i != 3 || lane_to_slot[lane] == 7)
phy_addr = CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR
+ i;
else
phy_addr = CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR;
phy_int = PHY_INTERFACE_MODE_SGMII;
break;
case 4:
case 5:
case 6:
case 7:
lane = serdes_get_first_lane(FSL_SRDS_1, QSGMII_SW1_B);
/* PHYs connected over QSGMII */
if (lane >= 0) {
phy_addr = CONFIG_SYS_FM1_QSGMII11_PHY_ADDR +
i - 4;
phy_int = PHY_INTERFACE_MODE_QSGMII;
break;
}
lane = serdes_get_first_lane(FSL_SRDS_1,
SGMII_SW1_MAC1 + i);
/* PHYs connected over SGMII */
if (lane >= 0) {
phy_addr = CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR
+ i - 3;
phy_int = PHY_INTERFACE_MODE_SGMII;
}
break;
case 8:
if (serdes_get_first_lane(FSL_SRDS_1,
SGMII_FM1_DTSEC1) < 0)
/* FM1@DTSEC1 is connected to SW1@PORT8 */
vsc9953_port_enable(i);
break;
case 9:
if (serdes_get_first_lane(FSL_SRDS_1,
SGMII_FM1_DTSEC2) < 0) {
/* Enable L2 On MAC2 using SCFG */
struct ccsr_scfg *scfg = (struct ccsr_scfg *)
CONFIG_SYS_MPC85xx_SCFG;
out_be32(&scfg->esgmiiselcr,
in_be32(&scfg->esgmiiselcr) |
(0x80000000));
vsc9953_port_enable(i);
}
break;
}
if (lane >= 0) {
bus = mii_dev_for_muxval(lane_to_slot[lane]);
vsc9953_port_info_set_mdio(i, bus);
vsc9953_port_enable(i);
}
vsc9953_port_info_set_phy_address(i, phy_addr);
vsc9953_port_info_set_phy_int(i, phy_int);
}
#endif
cpu_eth_init(bis);
#endif
return pci_eth_init(bis);
}