uboot/u-boot-stm32mp-2020.01/board/freescale/b4860qds/b4860qds.c

1271 lines
31 KiB
C
Raw Normal View History

2024-01-10 06:52:34 +00:00
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2011-2012 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <command.h>
#include <env.h>
#include <i2c.h>
#include <init.h>
#include <irq_func.h>
#include <netdev.h>
#include <linux/compiler.h>
#include <asm/mmu.h>
#include <asm/processor.h>
#include <linux/errno.h>
#include <asm/cache.h>
#include <asm/immap_85xx.h>
#include <asm/fsl_law.h>
#include <asm/fsl_serdes.h>
#include <asm/fsl_liodn.h>
#include <fm_eth.h>
#include <hwconfig.h>
#include "../common/qixis.h"
#include "../common/vsc3316_3308.h"
#include "../common/idt8t49n222a_serdes_clk.h"
#include "../common/zm7300.h"
#include "b4860qds.h"
#include "b4860qds_qixis.h"
#include "b4860qds_crossbar_con.h"
#define CLK_MUX_SEL_MASK 0x4
#define ETH_PHY_CLK_OUT 0x4
DECLARE_GLOBAL_DATA_PTR;
int checkboard(void)
{
char buf[64];
u8 sw;
struct cpu_type *cpu = gd->arch.cpu;
static const char *const freq[] = {"100", "125", "156.25", "161.13",
"122.88", "122.88", "122.88"};
int clock;
printf("Board: %sQDS, ", cpu->name);
printf("Sys ID: 0x%02x, Sys Ver: 0x%02x, ",
QIXIS_READ(id), QIXIS_READ(arch));
sw = QIXIS_READ(brdcfg[0]);
sw = (sw & QIXIS_LBMAP_MASK) >> QIXIS_LBMAP_SHIFT;
if (sw < 0x8)
printf("vBank: %d\n", sw);
else if (sw >= 0x8 && sw <= 0xE)
puts("NAND\n");
else
printf("invalid setting of SW%u\n", QIXIS_LBMAP_SWITCH);
printf("FPGA: v%d (%s), build %d",
(int)QIXIS_READ(scver), qixis_read_tag(buf),
(int)qixis_read_minor());
/* the timestamp string contains "\n" at the end */
printf(" on %s", qixis_read_time(buf));
/*
* Display the actual SERDES reference clocks as configured by the
* dip switches on the board. Note that the SWx registers could
* technically be set to force the reference clocks to match the
* values that the SERDES expects (or vice versa). For now, however,
* we just display both values and hope the user notices when they
* don't match.
*/
puts("SERDES Reference Clocks: ");
sw = QIXIS_READ(brdcfg[2]);
clock = (sw >> 5) & 7;
printf("Bank1=%sMHz ", freq[clock]);
sw = QIXIS_READ(brdcfg[4]);
clock = (sw >> 6) & 3;
printf("Bank2=%sMHz\n", freq[clock]);
return 0;
}
int select_i2c_ch_pca(u8 ch)
{
int ret;
/* Selecting proper channel via PCA*/
ret = i2c_write(I2C_MUX_PCA_ADDR, 0x0, 1, &ch, 1);
if (ret) {
printf("PCA: failed to select proper channel.\n");
return ret;
}
return 0;
}
/*
* read_voltage from sensor on I2C bus
* We use average of 4 readings, waiting for 532us befor another reading
*/
#define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */
#define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */
static inline int read_voltage(void)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
for (i = 0; i < NUM_READINGS; i++) {
ret = i2c_read(I2C_VOL_MONITOR_ADDR,
I2C_VOL_MONITOR_BUS_V_OFFSET, 1, (void *)&vol_mon, 2);
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%04x\n", vol_mon);
/* LSB = 4mv */
voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
udelay(WAIT_FOR_ADC);
}
/* calculate the average */
voltage_read /= NUM_READINGS;
return voltage_read;
}
static int adjust_vdd(ulong vdd_override)
{
int re_enable = disable_interrupts();
ccsr_gur_t __iomem *gur =
(void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
u32 fusesr;
u8 vid;
int vdd_target, vdd_last;
int existing_voltage, temp_voltage, voltage; /* all in 1/10 mV */
int ret;
unsigned int orig_i2c_speed;
unsigned long vdd_string_override;
char *vdd_string;
static const uint16_t vdd[32] = {
0, /* unused */
9875, /* 0.9875V */
9750,
9625,
9500,
9375,
9250,
9125,
9000,
8875,
8750,
8625,
8500,
8375,
8250,
8125,
10000, /* 1.0000V */
10125,
10250,
10375,
10500,
10625,
10750,
10875,
11000,
0, /* reserved */
};
struct vdd_drive {
u8 vid;
unsigned voltage;
};
ret = select_i2c_ch_pca(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
printf("VID: I2c failed to switch channel\n");
ret = -1;
goto exit;
}
/* get the voltage ID from fuse status register */
fusesr = in_be32(&gur->dcfg_fusesr);
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_VID_MASK;
if (vid == FSL_CORENET_DCFG_FUSESR_VID_MASK) {
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
}
vdd_target = vdd[vid];
debug("VID:Reading from from fuse,vid=%x vdd is %dmV\n",
vid, vdd_target/10);
/* check override variable for overriding VDD */
vdd_string = env_get("b4qds_vdd_mv");
if (vdd_override == 0 && vdd_string &&
!strict_strtoul(vdd_string, 10, &vdd_string_override))
vdd_override = vdd_string_override;
if (vdd_override >= 819 && vdd_override <= 1212) {
vdd_target = vdd_override * 10; /* convert to 1/10 mV */
debug("VDD override is %lu\n", vdd_override);
} else if (vdd_override != 0) {
printf("Invalid value.\n");
}
if (vdd_target == 0) {
printf("VID: VID not used\n");
ret = 0;
goto exit;
}
/*
* Read voltage monitor to check real voltage.
* Voltage monitor LSB is 4mv.
*/
vdd_last = read_voltage();
if (vdd_last < 0) {
printf("VID: abort VID adjustment\n");
ret = -1;
goto exit;
}
debug("VID: Core voltage is at %d mV\n", vdd_last);
ret = select_i2c_ch_pca(I2C_MUX_CH_DPM);
if (ret) {
printf("VID: I2c failed to switch channel to DPM\n");
ret = -1;
goto exit;
}
/* Round up to the value of step of Voltage regulator */
voltage = roundup(vdd_target, ZM_STEP);
debug("VID: rounded up voltage = %d\n", voltage);
/* lower the speed to 100kHz to access ZM7300 device */
debug("VID: Setting bus speed to 100KHz if not already set\n");
orig_i2c_speed = i2c_get_bus_speed();
if (orig_i2c_speed != 100000)
i2c_set_bus_speed(100000);
/* Read the existing level on board, if equal to requsted one,
no need to re-set */
existing_voltage = zm_read_voltage();
/* allowing the voltage difference of one step 0.0125V acceptable */
if ((existing_voltage >= voltage) &&
(existing_voltage < (voltage + ZM_STEP))) {
debug("VID: voltage already set as requested,returning\n");
ret = existing_voltage;
goto out;
}
debug("VID: Changing voltage for board from %dmV to %dmV\n",
existing_voltage/10, voltage/10);
if (zm_disable_wp() < 0) {
ret = -1;
goto out;
}
/* Change Voltage: the change is done through all the steps in the
way, to avoid reset to the board due to power good signal fail
in big voltage change gap jump.
*/
if (existing_voltage > voltage) {
temp_voltage = existing_voltage - ZM_STEP;
while (temp_voltage >= voltage) {
ret = zm_write_voltage(temp_voltage);
if (ret == temp_voltage) {
temp_voltage -= ZM_STEP;
} else {
/* ZM7300 device failed to set
* the voltage */
printf
("VID:Stepping down vol failed:%dmV\n",
temp_voltage/10);
ret = -1;
goto out;
}
}
} else {
temp_voltage = existing_voltage + ZM_STEP;
while (temp_voltage < (voltage + ZM_STEP)) {
ret = zm_write_voltage(temp_voltage);
if (ret == temp_voltage) {
temp_voltage += ZM_STEP;
} else {
/* ZM7300 device failed to set
* the voltage */
printf
("VID:Stepping up vol failed:%dmV\n",
temp_voltage/10);
ret = -1;
goto out;
}
}
}
if (zm_enable_wp() < 0)
ret = -1;
/* restore the speed to 400kHz */
out: debug("VID: Restore the I2C bus speed to %dKHz\n",
orig_i2c_speed/1000);
i2c_set_bus_speed(orig_i2c_speed);
if (ret < 0)
goto exit;
ret = select_i2c_ch_pca(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
printf("VID: I2c failed to switch channel\n");
ret = -1;
goto exit;
}
vdd_last = read_voltage();
select_i2c_ch_pca(I2C_CH_DEFAULT);
if (vdd_last > 0)
printf("VID: Core voltage %d mV\n", vdd_last);
else
ret = -1;
exit:
if (re_enable)
enable_interrupts();
return ret;
}
int configure_vsc3316_3308(void)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
unsigned int num_vsc16_con, num_vsc08_con;
u32 serdes1_prtcl, serdes2_prtcl;
int ret;
char buffer[HWCONFIG_BUFFER_SIZE];
char *buf = NULL;
serdes1_prtcl = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS1_PRTCL;
if (!serdes1_prtcl) {
printf("SERDES1 is not enabled\n");
return 0;
}
serdes1_prtcl >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
debug("Using SERDES1 Protocol: 0x%x:\n", serdes1_prtcl);
serdes2_prtcl = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS2_PRTCL;
if (!serdes2_prtcl) {
printf("SERDES2 is not enabled\n");
return 0;
}
serdes2_prtcl >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT;
debug("Using SERDES2 Protocol: 0x%x:\n", serdes2_prtcl);
switch (serdes1_prtcl) {
case 0x29:
case 0x2a:
case 0x2C:
case 0x2D:
case 0x2E:
/*
* Configuration:
* SERDES: 1
* Lanes: A,B: SGMII
* Lanes: C,D,E,F,G,H: CPRI
*/
debug("Configuring crossbar to use onboard SGMII PHYs:"
"srds_prctl:%x\n", serdes1_prtcl);
num_vsc16_con = NUM_CON_VSC3316;
/* Configure VSC3316 crossbar switch */
ret = select_i2c_ch_pca(I2C_CH_VSC3316);
if (!ret) {
ret = vsc3316_config(VSC3316_TX_ADDRESS,
vsc16_tx_4sfp_sgmii_12_56,
num_vsc16_con);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_RX_ADDRESS,
vsc16_rx_4sfp_sgmii_12_56,
num_vsc16_con);
if (ret)
return ret;
} else {
return ret;
}
break;
case 0x01:
case 0x02:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x2F:
case 0x30:
case 0x32:
case 0x33:
case 0x34:
case 0x39:
case 0x3A:
case 0x3C:
case 0x3D:
case 0x5C:
case 0x5D:
/*
* Configuration:
* SERDES: 1
* Lanes: A,B: AURORA
* Lanes: C,d: SGMII
* Lanes: E,F,G,H: CPRI
*/
debug("Configuring crossbar for Aurora, SGMII 3 and 4,"
" and CPRI. srds_prctl:%x\n", serdes1_prtcl);
num_vsc16_con = NUM_CON_VSC3316;
/* Configure VSC3316 crossbar switch */
ret = select_i2c_ch_pca(I2C_CH_VSC3316);
if (!ret) {
ret = vsc3316_config(VSC3316_TX_ADDRESS,
vsc16_tx_sfp_sgmii_aurora,
num_vsc16_con);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_RX_ADDRESS,
vsc16_rx_sfp_sgmii_aurora,
num_vsc16_con);
if (ret)
return ret;
} else {
return ret;
}
break;
#ifdef CONFIG_ARCH_B4420
case 0x17:
case 0x18:
/*
* Configuration:
* SERDES: 1
* Lanes: A,B,C,D: SGMII
* Lanes: E,F,G,H: CPRI
*/
debug("Configuring crossbar to use onboard SGMII PHYs:"
"srds_prctl:%x\n", serdes1_prtcl);
num_vsc16_con = NUM_CON_VSC3316;
/* Configure VSC3316 crossbar switch */
ret = select_i2c_ch_pca(I2C_CH_VSC3316);
if (!ret) {
ret = vsc3316_config(VSC3316_TX_ADDRESS,
vsc16_tx_sgmii_lane_cd, num_vsc16_con);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_RX_ADDRESS,
vsc16_rx_sgmii_lane_cd, num_vsc16_con);
if (ret)
return ret;
} else {
return ret;
}
break;
#endif
case 0x3E:
case 0x0D:
case 0x0E:
case 0x12:
num_vsc16_con = NUM_CON_VSC3316;
/* Configure VSC3316 crossbar switch */
ret = select_i2c_ch_pca(I2C_CH_VSC3316);
if (!ret) {
ret = vsc3316_config(VSC3316_TX_ADDRESS,
vsc16_tx_sfp, num_vsc16_con);
if (ret)
return ret;
ret = vsc3316_config(VSC3316_RX_ADDRESS,
vsc16_rx_sfp, num_vsc16_con);
if (ret)
return ret;
} else {
return ret;
}
break;
default:
printf("WARNING:VSC crossbars programming not supported for:%x"
" SerDes1 Protocol.\n", serdes1_prtcl);
return -1;
}
num_vsc08_con = NUM_CON_VSC3308;
/* Configure VSC3308 crossbar switch */
ret = select_i2c_ch_pca(I2C_CH_VSC3308);
switch (serdes2_prtcl) {
#ifdef CONFIG_ARCH_B4420
case 0x9d:
#endif
case 0x9E:
case 0x9A:
case 0x98:
case 0x48:
case 0x49:
case 0x4E:
case 0x79:
case 0x7A:
if (!ret) {
ret = vsc3308_config(VSC3308_TX_ADDRESS,
vsc08_tx_amc, num_vsc08_con);
if (ret)
return ret;
ret = vsc3308_config(VSC3308_RX_ADDRESS,
vsc08_rx_amc, num_vsc08_con);
if (ret)
return ret;
} else {
return ret;
}
break;
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8a:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0xb1:
case 0xb2:
if (!ret) {
/*
* Extract hwconfig from environment since environment
* is not setup properly yet
*/
env_get_f("hwconfig", buffer, sizeof(buffer));
buf = buffer;
if (hwconfig_subarg_cmp_f("fsl_b4860_serdes2",
"sfp_amc", "sfp", buf)) {
#ifdef CONFIG_SYS_FSL_B4860QDS_XFI_ERR
/* change default VSC3308 for XFI erratum */
ret = vsc3308_config_adjust(VSC3308_TX_ADDRESS,
vsc08_tx_sfp, num_vsc08_con);
if (ret)
return ret;
ret = vsc3308_config_adjust(VSC3308_RX_ADDRESS,
vsc08_rx_sfp, num_vsc08_con);
if (ret)
return ret;
#else
ret = vsc3308_config(VSC3308_TX_ADDRESS,
vsc08_tx_sfp, num_vsc08_con);
if (ret)
return ret;
ret = vsc3308_config(VSC3308_RX_ADDRESS,
vsc08_rx_sfp, num_vsc08_con);
if (ret)
return ret;
#endif
} else {
ret = vsc3308_config(VSC3308_TX_ADDRESS,
vsc08_tx_amc, num_vsc08_con);
if (ret)
return ret;
ret = vsc3308_config(VSC3308_RX_ADDRESS,
vsc08_rx_amc, num_vsc08_con);
if (ret)
return ret;
}
} else {
return ret;
}
break;
default:
printf("WARNING:VSC crossbars programming not supported for: %x"
" SerDes2 Protocol.\n", serdes2_prtcl);
return -1;
}
return 0;
}
static int calibrate_pll(serdes_corenet_t *srds_regs, int pll_num)
{
u32 rst_err;
/* Steps For SerDes PLLs reset and reconfiguration
* or PLL power-up procedure
*/
debug("CALIBRATE PLL:%d\n", pll_num);
clrbits_be32(&srds_regs->bank[pll_num].rstctl,
SRDS_RSTCTL_SDRST_B);
udelay(10);
clrbits_be32(&srds_regs->bank[pll_num].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B));
udelay(10);
setbits_be32(&srds_regs->bank[pll_num].rstctl,
SRDS_RSTCTL_RST);
setbits_be32(&srds_regs->bank[pll_num].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
udelay(20);
/* Check whether PLL has been locked or not */
rst_err = in_be32(&srds_regs->bank[pll_num].rstctl) &
SRDS_RSTCTL_RSTERR;
rst_err >>= SRDS_RSTCTL_RSTERR_SHIFT;
debug("RST_ERR value for PLL %d is: 0x%x:\n", pll_num, rst_err);
if (rst_err)
return rst_err;
return rst_err;
}
static int check_pll_locks(serdes_corenet_t *srds_regs, int pll_num)
{
int ret = 0;
u32 fcap, dcbias, bcap, pllcr1, pllcr0;
if (calibrate_pll(srds_regs, pll_num)) {
/* STEP 1 */
/* Read fcap, dcbias and bcap value */
clrbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OUT_EN);
fcap = in_be32(&srds_regs->bank[pll_num].pllsr2) &
SRDS_PLLSR2_FCAP;
fcap >>= SRDS_PLLSR2_FCAP_SHIFT;
bcap = in_be32(&srds_regs->bank[pll_num].pllsr2) &
SRDS_PLLSR2_BCAP_EN;
bcap >>= SRDS_PLLSR2_BCAP_EN_SHIFT;
setbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OUT_EN);
dcbias = in_be32(&srds_regs->bank[pll_num].pllsr2) &
SRDS_PLLSR2_DCBIAS;
dcbias >>= SRDS_PLLSR2_DCBIAS_SHIFT;
debug("values of bcap:%x, fcap:%x and dcbias:%x\n",
bcap, fcap, dcbias);
if (fcap == 0 && bcap == 1) {
/* Step 3 */
clrbits_be32(&srds_regs->bank[pll_num].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
clrbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_EN);
setbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_OVD);
if (calibrate_pll(srds_regs, pll_num)) {
/*save the fcap, dcbias and bcap values*/
clrbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OUT_EN);
fcap = in_be32(&srds_regs->bank[pll_num].pllsr2)
& SRDS_PLLSR2_FCAP;
fcap >>= SRDS_PLLSR2_FCAP_SHIFT;
bcap = in_be32(&srds_regs->bank[pll_num].pllsr2)
& SRDS_PLLSR2_BCAP_EN;
bcap >>= SRDS_PLLSR2_BCAP_EN_SHIFT;
setbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OUT_EN);
dcbias = in_be32
(&srds_regs->bank[pll_num].pllsr2) &
SRDS_PLLSR2_DCBIAS;
dcbias >>= SRDS_PLLSR2_DCBIAS_SHIFT;
/* Step 4*/
clrbits_be32(&srds_regs->bank[pll_num].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
setbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BYP_CAL);
clrbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_EN);
setbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_OVD);
/* change the fcap and dcbias to the saved
* values from Step 3 */
clrbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_PLL_FCAP);
pllcr1 = (in_be32
(&srds_regs->bank[pll_num].pllcr1)|
(fcap << SRDS_PLLCR1_PLL_FCAP_SHIFT));
out_be32(&srds_regs->bank[pll_num].pllcr1,
pllcr1);
clrbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OVRD);
pllcr0 = (in_be32
(&srds_regs->bank[pll_num].pllcr0)|
(dcbias << SRDS_PLLCR0_DCBIAS_OVRD_SHIFT));
out_be32(&srds_regs->bank[pll_num].pllcr0,
pllcr0);
ret = calibrate_pll(srds_regs, pll_num);
if (ret)
return ret;
} else {
goto out;
}
} else { /* Step 5 */
clrbits_be32(&srds_regs->bank[pll_num].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
udelay(10);
/* Change the fcap, dcbias, and bcap to the
* values from Step 1 */
setbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BYP_CAL);
clrbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_PLL_FCAP);
pllcr1 = (in_be32(&srds_regs->bank[pll_num].pllcr1)|
(fcap << SRDS_PLLCR1_PLL_FCAP_SHIFT));
out_be32(&srds_regs->bank[pll_num].pllcr1,
pllcr1);
clrbits_be32(&srds_regs->bank[pll_num].pllcr0,
SRDS_PLLCR0_DCBIAS_OVRD);
pllcr0 = (in_be32(&srds_regs->bank[pll_num].pllcr0)|
(dcbias << SRDS_PLLCR0_DCBIAS_OVRD_SHIFT));
out_be32(&srds_regs->bank[pll_num].pllcr0,
pllcr0);
clrbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_EN);
setbits_be32(&srds_regs->bank[pll_num].pllcr1,
SRDS_PLLCR1_BCAP_OVD);
ret = calibrate_pll(srds_regs, pll_num);
if (ret)
return ret;
}
}
out:
return 0;
}
static int check_serdes_pll_locks(void)
{
serdes_corenet_t *srds1_regs =
(void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
serdes_corenet_t *srds2_regs =
(void *)CONFIG_SYS_FSL_CORENET_SERDES2_ADDR;
int i, ret1, ret2;
debug("\nSerDes1 Lock check\n");
for (i = 0; i < CONFIG_SYS_FSL_SRDS_NUM_PLLS; i++) {
ret1 = check_pll_locks(srds1_regs, i);
if (ret1) {
printf("SerDes1, PLL:%d didnt lock\n", i);
return ret1;
}
}
debug("\nSerDes2 Lock check\n");
for (i = 0; i < CONFIG_SYS_FSL_SRDS_NUM_PLLS; i++) {
ret2 = check_pll_locks(srds2_regs, i);
if (ret2) {
printf("SerDes2, PLL:%d didnt lock\n", i);
return ret2;
}
}
return 0;
}
int config_serdes1_refclks(void)
{
ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
serdes_corenet_t *srds_regs =
(void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
u32 serdes1_prtcl, lane;
unsigned int flag_sgmii_aurora_prtcl = 0;
int i;
int ret = 0;
serdes1_prtcl = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS1_PRTCL;
if (!serdes1_prtcl) {
printf("SERDES1 is not enabled\n");
return -1;
}
serdes1_prtcl >>= FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
debug("Using SERDES1 Protocol: 0x%x:\n", serdes1_prtcl);
/* To prevent generation of reset request from SerDes
* while changing the refclks, By setting SRDS_RST_MSK bit,
* SerDes reset event cannot cause a reset request
*/
setbits_be32(&gur->rstrqmr1, FSL_CORENET_RSTRQMR1_SRDS_RST_MSK);
/* Reconfigure IDT idt8t49n222a device for CPRI to work
* For this SerDes1's Refclk1 and refclk2 need to be set
* to 122.88MHz
*/
switch (serdes1_prtcl) {
case 0x29:
case 0x2A:
case 0x2C:
case 0x2D:
case 0x2E:
case 0x01:
case 0x02:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0A:
case 0x0B:
case 0x0C:
case 0x2F:
case 0x30:
case 0x32:
case 0x33:
case 0x34:
case 0x39:
case 0x3A:
case 0x3C:
case 0x3D:
case 0x5C:
case 0x5D:
debug("Configuring idt8t49n222a for CPRI SerDes clks:"
" for srds_prctl:%x\n", serdes1_prtcl);
ret = select_i2c_ch_pca(I2C_CH_IDT);
if (!ret) {
ret = set_serdes_refclk(IDT_SERDES1_ADDRESS, 1,
SERDES_REFCLK_122_88,
SERDES_REFCLK_122_88, 0);
if (ret) {
printf("IDT8T49N222A configuration failed.\n");
goto out;
} else
debug("IDT8T49N222A configured.\n");
} else {
goto out;
}
select_i2c_ch_pca(I2C_CH_DEFAULT);
/* Change SerDes1's Refclk1 to 125MHz for on board
* SGMIIs or Aurora to work
*/
for (lane = 0; lane < SRDS_MAX_LANES; lane++) {
enum srds_prtcl lane_prtcl = serdes_get_prtcl
(0, serdes1_prtcl, lane);
switch (lane_prtcl) {
case SGMII_FM1_DTSEC1:
case SGMII_FM1_DTSEC2:
case SGMII_FM1_DTSEC3:
case SGMII_FM1_DTSEC4:
case SGMII_FM1_DTSEC5:
case SGMII_FM1_DTSEC6:
case AURORA:
flag_sgmii_aurora_prtcl++;
break;
default:
break;
}
}
if (flag_sgmii_aurora_prtcl)
QIXIS_WRITE(brdcfg[4], QIXIS_SRDS1CLK_125);
/* Steps For SerDes PLLs reset and reconfiguration after
* changing SerDes's refclks
*/
for (i = 0; i < CONFIG_SYS_FSL_SRDS_NUM_PLLS; i++) {
debug("For PLL%d reset and reconfiguration after"
" changing refclks\n", i+1);
clrbits_be32(&srds_regs->bank[i].rstctl,
SRDS_RSTCTL_SDRST_B);
udelay(10);
clrbits_be32(&srds_regs->bank[i].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B));
udelay(10);
setbits_be32(&srds_regs->bank[i].rstctl,
SRDS_RSTCTL_RST);
setbits_be32(&srds_regs->bank[i].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
}
break;
default:
printf("WARNING:IDT8T49N222A configuration not"
" supported for:%x SerDes1 Protocol.\n",
serdes1_prtcl);
}
out:
/* Clearing SRDS_RST_MSK bit as now
* SerDes reset event can cause a reset request
*/
clrbits_be32(&gur->rstrqmr1, FSL_CORENET_RSTRQMR1_SRDS_RST_MSK);
return ret;
}
int config_serdes2_refclks(void)
{
ccsr_gur_t *gur = (void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
serdes_corenet_t *srds2_regs =
(void *)CONFIG_SYS_FSL_CORENET_SERDES2_ADDR;
u32 serdes2_prtcl;
int ret = 0;
int i;
serdes2_prtcl = in_be32(&gur->rcwsr[4]) &
FSL_CORENET2_RCWSR4_SRDS2_PRTCL;
if (!serdes2_prtcl) {
debug("SERDES2 is not enabled\n");
return -ENODEV;
}
serdes2_prtcl >>= FSL_CORENET2_RCWSR4_SRDS2_PRTCL_SHIFT;
debug("Using SERDES2 Protocol: 0x%x:\n", serdes2_prtcl);
/* To prevent generation of reset request from SerDes
* while changing the refclks, By setting SRDS_RST_MSK bit,
* SerDes reset event cannot cause a reset request
*/
setbits_be32(&gur->rstrqmr1, FSL_CORENET_RSTRQMR1_SRDS_RST_MSK);
/* Reconfigure IDT idt8t49n222a device for PCIe SATA to work
* For this SerDes2's Refclk1 need to be set to 100MHz
*/
switch (serdes2_prtcl) {
#ifdef CONFIG_ARCH_B4420
case 0x9d:
#endif
case 0x9E:
case 0x9A:
/* fallthrough */
case 0xb1:
case 0xb2:
debug("Configuring IDT for PCIe SATA for srds_prctl:%x\n",
serdes2_prtcl);
ret = select_i2c_ch_pca(I2C_CH_IDT);
if (!ret) {
ret = set_serdes_refclk(IDT_SERDES2_ADDRESS, 2,
SERDES_REFCLK_100,
SERDES_REFCLK_156_25, 0);
if (ret) {
printf("IDT8T49N222A configuration failed.\n");
goto out;
} else
debug("IDT8T49N222A configured.\n");
} else {
goto out;
}
select_i2c_ch_pca(I2C_CH_DEFAULT);
/* Steps For SerDes PLLs reset and reconfiguration after
* changing SerDes's refclks
*/
for (i = 0; i < CONFIG_SYS_FSL_SRDS_NUM_PLLS; i++) {
clrbits_be32(&srds2_regs->bank[i].rstctl,
SRDS_RSTCTL_SDRST_B);
udelay(10);
clrbits_be32(&srds2_regs->bank[i].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B));
udelay(10);
setbits_be32(&srds2_regs->bank[i].rstctl,
SRDS_RSTCTL_RST);
setbits_be32(&srds2_regs->bank[i].rstctl,
(SRDS_RSTCTL_SDEN | SRDS_RSTCTL_PLLRST_B
| SRDS_RSTCTL_SDRST_B));
udelay(10);
}
break;
default:
printf("IDT configuration not supported for:%x S2 Protocol.\n",
serdes2_prtcl);
}
out:
/* Clearing SRDS_RST_MSK bit as now
* SerDes reset event can cause a reset request
*/
clrbits_be32(&gur->rstrqmr1, FSL_CORENET_RSTRQMR1_SRDS_RST_MSK);
return ret;
}
int board_early_init_r(void)
{
const unsigned int flashbase = CONFIG_SYS_FLASH_BASE;
int flash_esel = find_tlb_idx((void *)flashbase, 1);
int ret;
u32 svr = SVR_SOC_VER(get_svr());
/* Create law for MAPLE only for personalities having MAPLE */
if ((svr == SVR_B4860) || (svr == SVR_B4440) ||
(svr == SVR_B4420) || (svr == SVR_B4220)) {
set_next_law(CONFIG_SYS_MAPLE_MEM_PHYS, LAW_SIZE_16M,
LAW_TRGT_IF_MAPLE);
}
/*
* Remap Boot flash + PROMJET region to caching-inhibited
* so that flash can be erased properly.
*/
/* Flush d-cache and invalidate i-cache of any FLASH data */
flush_dcache();
invalidate_icache();
if (flash_esel == -1) {
/* very unlikely unless something is messed up */
puts("Error: Could not find TLB for FLASH BASE\n");
flash_esel = 2; /* give our best effort to continue */
} else {
/* invalidate existing TLB entry for flash + promjet */
disable_tlb(flash_esel);
}
set_tlb(1, flashbase, CONFIG_SYS_FLASH_BASE_PHYS,
MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I|MAS2_G,
0, flash_esel, BOOKE_PAGESZ_256M, 1);
/*
* Adjust core voltage according to voltage ID
* This function changes I2C mux to channel 2.
*/
if (adjust_vdd(0) < 0)
printf("Warning: Adjusting core voltage failed\n");
/* SerDes1 refclks need to be set again, as default clks
* are not suitable for CPRI and onboard SGMIIs to work
* simultaneously.
* This function will set SerDes1's Refclk1 and refclk2
* as per SerDes1 protocols
*/
if (config_serdes1_refclks())
printf("SerDes1 Refclks couldn't set properly.\n");
else
printf("SerDes1 Refclks have been set.\n");
/* SerDes2 refclks need to be set again, as default clks
* are not suitable for PCIe SATA to work
* This function will set SerDes2's Refclk1 and refclk2
* for SerDes2 protocols having PCIe in them
* for PCIe SATA to work
*/
ret = config_serdes2_refclks();
if (!ret)
printf("SerDes2 Refclks have been set.\n");
else if (ret == -ENODEV)
printf("SerDes disable, Refclks couldn't change.\n");
else
printf("SerDes2 Refclk reconfiguring failed.\n");
#if defined(CONFIG_SYS_FSL_ERRATUM_A006384) || \
defined(CONFIG_SYS_FSL_ERRATUM_A006475)
/* Rechecking the SerDes locks after all SerDes configurations
* are done, As SerDes PLLs may not lock reliably at 5 G VCO
* and at cold temperatures.
* Following sequence ensure the proper locking of SerDes PLLs.
*/
if (SVR_MAJ(get_svr()) == 1) {
if (check_serdes_pll_locks())
printf("SerDes plls still not locked properly.\n");
else
printf("SerDes plls have been locked well.\n");
}
#endif
/* Configure VSC3316 and VSC3308 crossbar switches */
if (configure_vsc3316_3308())
printf("VSC:failed to configure VSC3316/3308.\n");
else
printf("VSC:VSC3316/3308 successfully configured.\n");
select_i2c_ch_pca(I2C_CH_DEFAULT);
return 0;
}
unsigned long get_board_sys_clk(void)
{
u8 sysclk_conf = QIXIS_READ(brdcfg[1]);
switch ((sysclk_conf & 0x0C) >> 2) {
case QIXIS_CLK_100:
return 100000000;
case QIXIS_CLK_125:
return 125000000;
case QIXIS_CLK_133:
return 133333333;
}
return 66666666;
}
unsigned long get_board_ddr_clk(void)
{
u8 ddrclk_conf = QIXIS_READ(brdcfg[1]);
switch (ddrclk_conf & 0x03) {
case QIXIS_CLK_100:
return 100000000;
case QIXIS_CLK_125:
return 125000000;
case QIXIS_CLK_133:
return 133333333;
}
return 66666666;
}
static int serdes_refclock(u8 sw, u8 sdclk)
{
unsigned int clock;
int ret = -1;
u8 brdcfg4;
if (sdclk == 1) {
brdcfg4 = QIXIS_READ(brdcfg[4]);
if ((brdcfg4 & CLK_MUX_SEL_MASK) == ETH_PHY_CLK_OUT)
return SRDS_PLLCR0_RFCK_SEL_125;
else
clock = (sw >> 5) & 7;
} else
clock = (sw >> 6) & 3;
switch (clock) {
case 0:
ret = SRDS_PLLCR0_RFCK_SEL_100;
break;
case 1:
ret = SRDS_PLLCR0_RFCK_SEL_125;
break;
case 2:
ret = SRDS_PLLCR0_RFCK_SEL_156_25;
break;
case 3:
ret = SRDS_PLLCR0_RFCK_SEL_161_13;
break;
case 4:
case 5:
case 6:
ret = SRDS_PLLCR0_RFCK_SEL_122_88;
break;
default:
ret = -1;
break;
}
return ret;
}
#define NUM_SRDS_BANKS 2
int misc_init_r(void)
{
u8 sw;
serdes_corenet_t *srds_regs =
(void *)CONFIG_SYS_FSL_CORENET_SERDES_ADDR;
u32 actual[NUM_SRDS_BANKS];
unsigned int i;
int clock;
sw = QIXIS_READ(brdcfg[2]);
clock = serdes_refclock(sw, 1);
if (clock >= 0)
actual[0] = clock;
else
printf("Warning: SDREFCLK1 switch setting is unsupported\n");
sw = QIXIS_READ(brdcfg[4]);
clock = serdes_refclock(sw, 2);
if (clock >= 0)
actual[1] = clock;
else
printf("Warning: SDREFCLK2 switch setting unsupported\n");
for (i = 0; i < NUM_SRDS_BANKS; i++) {
u32 pllcr0 = srds_regs->bank[i].pllcr0;
u32 expected = pllcr0 & SRDS_PLLCR0_RFCK_SEL_MASK;
if (expected != actual[i]) {
printf("Warning: SERDES bank %u expects reference clock"
" %sMHz, but actual is %sMHz\n", i + 1,
serdes_clock_to_string(expected),
serdes_clock_to_string(actual[i]));
}
}
return 0;
}
int ft_board_setup(void *blob, bd_t *bd)
{
phys_addr_t base;
phys_size_t size;
ft_cpu_setup(blob, bd);
base = env_get_bootm_low();
size = env_get_bootm_size();
fdt_fixup_memory(blob, (u64)base, (u64)size);
#ifdef CONFIG_PCI
pci_of_setup(blob, bd);
#endif
fdt_fixup_liodn(blob);
#ifdef CONFIG_HAS_FSL_DR_USB
fsl_fdt_fixup_dr_usb(blob, bd);
#endif
#ifdef CONFIG_SYS_DPAA_FMAN
fdt_fixup_fman_ethernet(blob);
fdt_fixup_board_enet(blob);
#endif
return 0;
}
/*
* Dump board switch settings.
* The bits that cannot be read/sampled via some FPGA or some
* registers, they will be displayed as
* underscore in binary format. mask[] has those bits.
* Some bits are calculated differently than the actual switches
* if booting with overriding by FPGA.
*/
void qixis_dump_switch(void)
{
int i;
u8 sw[5];
/*
* Any bit with 1 means that bit cannot be reverse engineered.
* It will be displayed as _ in binary format.
*/
static const u8 mask[] = {0x07, 0, 0, 0xff, 0};
char buf[10];
u8 brdcfg[16], dutcfg[16];
for (i = 0; i < 16; i++) {
brdcfg[i] = qixis_read(offsetof(struct qixis, brdcfg[0]) + i);
dutcfg[i] = qixis_read(offsetof(struct qixis, dutcfg[0]) + i);
}
sw[0] = ((brdcfg[0] & 0x0f) << 4) | \
(brdcfg[9] & 0x08);
sw[1] = ((dutcfg[1] & 0x01) << 7) | \
((dutcfg[2] & 0x07) << 4) | \
((dutcfg[6] & 0x10) >> 1) | \
((dutcfg[6] & 0x80) >> 5) | \
((dutcfg[1] & 0x40) >> 5) | \
(dutcfg[6] & 0x01);
sw[2] = dutcfg[0];
sw[3] = 0;
sw[4] = ((brdcfg[1] & 0x30) << 2) | \
((brdcfg[1] & 0xc0) >> 2) | \
(brdcfg[1] & 0x0f);
puts("DIP switch settings:\n");
for (i = 0; i < 5; i++) {
printf("SW%d = 0b%s (0x%02x)\n",
i + 1, byte_to_binary_mask(sw[i], mask[i], buf), sw[i]);
}
}