554 lines
15 KiB
C
554 lines
15 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/*
|
||
|
* Copyright (c) 2016, NVIDIA CORPORATION.
|
||
|
*/
|
||
|
|
||
|
#include <common.h>
|
||
|
#include <cpu_func.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/arch-tegra/ivc.h>
|
||
|
|
||
|
#define TEGRA_IVC_ALIGN 64
|
||
|
|
||
|
/*
|
||
|
* IVC channel reset protocol.
|
||
|
*
|
||
|
* Each end uses its tx_channel.state to indicate its synchronization state.
|
||
|
*/
|
||
|
enum ivc_state {
|
||
|
/*
|
||
|
* This value is zero for backwards compatibility with services that
|
||
|
* assume channels to be initially zeroed. Such channels are in an
|
||
|
* initially valid state, but cannot be asynchronously reset, and must
|
||
|
* maintain a valid state at all times.
|
||
|
*
|
||
|
* The transmitting end can enter the established state from the sync or
|
||
|
* ack state when it observes the receiving endpoint in the ack or
|
||
|
* established state, indicating that has cleared the counters in our
|
||
|
* rx_channel.
|
||
|
*/
|
||
|
ivc_state_established = 0,
|
||
|
|
||
|
/*
|
||
|
* If an endpoint is observed in the sync state, the remote endpoint is
|
||
|
* allowed to clear the counters it owns asynchronously with respect to
|
||
|
* the current endpoint. Therefore, the current endpoint is no longer
|
||
|
* allowed to communicate.
|
||
|
*/
|
||
|
ivc_state_sync,
|
||
|
|
||
|
/*
|
||
|
* When the transmitting end observes the receiving end in the sync
|
||
|
* state, it can clear the w_count and r_count and transition to the ack
|
||
|
* state. If the remote endpoint observes us in the ack state, it can
|
||
|
* return to the established state once it has cleared its counters.
|
||
|
*/
|
||
|
ivc_state_ack
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* This structure is divided into two-cache aligned parts, the first is only
|
||
|
* written through the tx_channel pointer, while the second is only written
|
||
|
* through the rx_channel pointer. This delineates ownership of the cache lines,
|
||
|
* which is critical to performance and necessary in non-cache coherent
|
||
|
* implementations.
|
||
|
*/
|
||
|
struct tegra_ivc_channel_header {
|
||
|
union {
|
||
|
/* fields owned by the transmitting end */
|
||
|
struct {
|
||
|
uint32_t w_count;
|
||
|
uint32_t state;
|
||
|
};
|
||
|
uint8_t w_align[TEGRA_IVC_ALIGN];
|
||
|
};
|
||
|
union {
|
||
|
/* fields owned by the receiving end */
|
||
|
uint32_t r_count;
|
||
|
uint8_t r_align[TEGRA_IVC_ALIGN];
|
||
|
};
|
||
|
};
|
||
|
|
||
|
static inline void tegra_ivc_invalidate_counter(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *h,
|
||
|
ulong offset)
|
||
|
{
|
||
|
ulong base = ((ulong)h) + offset;
|
||
|
invalidate_dcache_range(base, base + TEGRA_IVC_ALIGN);
|
||
|
}
|
||
|
|
||
|
static inline void tegra_ivc_flush_counter(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *h,
|
||
|
ulong offset)
|
||
|
{
|
||
|
ulong base = ((ulong)h) + offset;
|
||
|
flush_dcache_range(base, base + TEGRA_IVC_ALIGN);
|
||
|
}
|
||
|
|
||
|
static inline ulong tegra_ivc_frame_addr(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *h,
|
||
|
uint32_t frame)
|
||
|
{
|
||
|
BUG_ON(frame >= ivc->nframes);
|
||
|
|
||
|
return ((ulong)h) + sizeof(struct tegra_ivc_channel_header) +
|
||
|
(ivc->frame_size * frame);
|
||
|
}
|
||
|
|
||
|
static inline void *tegra_ivc_frame_pointer(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *ch,
|
||
|
uint32_t frame)
|
||
|
{
|
||
|
return (void *)tegra_ivc_frame_addr(ivc, ch, frame);
|
||
|
}
|
||
|
|
||
|
static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *h,
|
||
|
unsigned frame)
|
||
|
{
|
||
|
ulong base = tegra_ivc_frame_addr(ivc, h, frame);
|
||
|
invalidate_dcache_range(base, base + ivc->frame_size);
|
||
|
}
|
||
|
|
||
|
static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *h,
|
||
|
unsigned frame)
|
||
|
{
|
||
|
ulong base = tegra_ivc_frame_addr(ivc, h, frame);
|
||
|
flush_dcache_range(base, base + ivc->frame_size);
|
||
|
}
|
||
|
|
||
|
static inline int tegra_ivc_channel_empty(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *ch)
|
||
|
{
|
||
|
/*
|
||
|
* This function performs multiple checks on the same values with
|
||
|
* security implications, so create snapshots with ACCESS_ONCE() to
|
||
|
* ensure that these checks use the same values.
|
||
|
*/
|
||
|
uint32_t w_count = ACCESS_ONCE(ch->w_count);
|
||
|
uint32_t r_count = ACCESS_ONCE(ch->r_count);
|
||
|
|
||
|
/*
|
||
|
* Perform an over-full check to prevent denial of service attacks where
|
||
|
* a server could be easily fooled into believing that there's an
|
||
|
* extremely large number of frames ready, since receivers are not
|
||
|
* expected to check for full or over-full conditions.
|
||
|
*
|
||
|
* Although the channel isn't empty, this is an invalid case caused by
|
||
|
* a potentially malicious peer, so returning empty is safer, because it
|
||
|
* gives the impression that the channel has gone silent.
|
||
|
*/
|
||
|
if (w_count - r_count > ivc->nframes)
|
||
|
return 1;
|
||
|
|
||
|
return w_count == r_count;
|
||
|
}
|
||
|
|
||
|
static inline int tegra_ivc_channel_full(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *ch)
|
||
|
{
|
||
|
/*
|
||
|
* Invalid cases where the counters indicate that the queue is over
|
||
|
* capacity also appear full.
|
||
|
*/
|
||
|
return (ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count)) >=
|
||
|
ivc->nframes;
|
||
|
}
|
||
|
|
||
|
static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ACCESS_ONCE(ivc->rx_channel->r_count) =
|
||
|
ACCESS_ONCE(ivc->rx_channel->r_count) + 1;
|
||
|
|
||
|
if (ivc->r_pos == ivc->nframes - 1)
|
||
|
ivc->r_pos = 0;
|
||
|
else
|
||
|
ivc->r_pos++;
|
||
|
}
|
||
|
|
||
|
static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ACCESS_ONCE(ivc->tx_channel->w_count) =
|
||
|
ACCESS_ONCE(ivc->tx_channel->w_count) + 1;
|
||
|
|
||
|
if (ivc->w_pos == ivc->nframes - 1)
|
||
|
ivc->w_pos = 0;
|
||
|
else
|
||
|
ivc->w_pos++;
|
||
|
}
|
||
|
|
||
|
static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
|
||
|
/*
|
||
|
* tx_channel->state is set locally, so it is not synchronized with
|
||
|
* state from the remote peer. The remote peer cannot reset its
|
||
|
* transmit counters until we've acknowledged its synchronization
|
||
|
* request, so no additional synchronization is required because an
|
||
|
* asynchronous transition of rx_channel->state to ivc_state_ack is not
|
||
|
* allowed.
|
||
|
*/
|
||
|
if (ivc->tx_channel->state != ivc_state_established)
|
||
|
return -ECONNRESET;
|
||
|
|
||
|
/*
|
||
|
* Avoid unnecessary invalidations when performing repeated accesses to
|
||
|
* an IVC channel by checking the old queue pointers first.
|
||
|
* Synchronization is only necessary when these pointers indicate empty
|
||
|
* or full.
|
||
|
*/
|
||
|
if (!tegra_ivc_channel_empty(ivc, ivc->rx_channel))
|
||
|
return 0;
|
||
|
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
|
||
|
return tegra_ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0;
|
||
|
}
|
||
|
|
||
|
static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
|
||
|
if (ivc->tx_channel->state != ivc_state_established)
|
||
|
return -ECONNRESET;
|
||
|
|
||
|
if (!tegra_ivc_channel_full(ivc, ivc->tx_channel))
|
||
|
return 0;
|
||
|
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, r_count);
|
||
|
tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
|
||
|
return tegra_ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t tegra_ivc_channel_avail_count(struct tegra_ivc *ivc,
|
||
|
struct tegra_ivc_channel_header *ch)
|
||
|
{
|
||
|
/*
|
||
|
* This function isn't expected to be used in scenarios where an
|
||
|
* over-full situation can lead to denial of service attacks. See the
|
||
|
* comment in tegra_ivc_channel_empty() for an explanation about
|
||
|
* special over-full considerations.
|
||
|
*/
|
||
|
return ACCESS_ONCE(ch->w_count) - ACCESS_ONCE(ch->r_count);
|
||
|
}
|
||
|
|
||
|
int tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc, void **frame)
|
||
|
{
|
||
|
int result = tegra_ivc_check_read(ivc);
|
||
|
if (result < 0)
|
||
|
return result;
|
||
|
|
||
|
/*
|
||
|
* Order observation of w_pos potentially indicating new data before
|
||
|
* data read.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
tegra_ivc_invalidate_frame(ivc, ivc->rx_channel, ivc->r_pos);
|
||
|
*frame = tegra_ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int tegra_ivc_read_advance(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* No read barriers or synchronization here: the caller is expected to
|
||
|
* have already observed the channel non-empty. This check is just to
|
||
|
* catch programming errors.
|
||
|
*/
|
||
|
result = tegra_ivc_check_read(ivc);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
tegra_ivc_advance_rx(ivc);
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, r_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->rx_channel, offset);
|
||
|
|
||
|
/*
|
||
|
* Ensure our write to r_pos occurs before our read from w_pos.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
|
||
|
|
||
|
if (tegra_ivc_channel_avail_count(ivc, ivc->rx_channel) ==
|
||
|
ivc->nframes - 1)
|
||
|
ivc->notify(ivc);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc, void **frame)
|
||
|
{
|
||
|
int result = tegra_ivc_check_write(ivc);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
*frame = tegra_ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int tegra_ivc_write_advance(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
int result;
|
||
|
|
||
|
result = tegra_ivc_check_write(ivc);
|
||
|
if (result)
|
||
|
return result;
|
||
|
|
||
|
tegra_ivc_flush_frame(ivc, ivc->tx_channel, ivc->w_pos);
|
||
|
|
||
|
/*
|
||
|
* Order any possible stores to the frame before update of w_pos.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
tegra_ivc_advance_tx(ivc);
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
|
||
|
|
||
|
/*
|
||
|
* Ensure our write to w_pos occurs before our read from r_pos.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, r_count);
|
||
|
tegra_ivc_invalidate_counter(ivc, ivc->tx_channel, offset);
|
||
|
|
||
|
if (tegra_ivc_channel_avail_count(ivc, ivc->tx_channel) == 1)
|
||
|
ivc->notify(ivc);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ===============================================================
|
||
|
* IVC State Transition Table - see tegra_ivc_channel_notified()
|
||
|
* ===============================================================
|
||
|
*
|
||
|
* local remote action
|
||
|
* ----- ------ -----------------------------------
|
||
|
* SYNC EST <none>
|
||
|
* SYNC ACK reset counters; move to EST; notify
|
||
|
* SYNC SYNC reset counters; move to ACK; notify
|
||
|
* ACK EST move to EST; notify
|
||
|
* ACK ACK move to EST; notify
|
||
|
* ACK SYNC reset counters; move to ACK; notify
|
||
|
* EST EST <none>
|
||
|
* EST ACK <none>
|
||
|
* EST SYNC reset counters; move to ACK; notify
|
||
|
*
|
||
|
* ===============================================================
|
||
|
*/
|
||
|
int tegra_ivc_channel_notified(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
enum ivc_state peer_state;
|
||
|
|
||
|
/* Copy the receiver's state out of shared memory. */
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_invalidate_counter(ivc, ivc->rx_channel, offset);
|
||
|
peer_state = ACCESS_ONCE(ivc->rx_channel->state);
|
||
|
|
||
|
if (peer_state == ivc_state_sync) {
|
||
|
/*
|
||
|
* Order observation of ivc_state_sync before stores clearing
|
||
|
* tx_channel.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* Reset tx_channel counters. The remote end is in the SYNC
|
||
|
* state and won't make progress until we change our state,
|
||
|
* so the counters are not in use at this time.
|
||
|
*/
|
||
|
ivc->tx_channel->w_count = 0;
|
||
|
ivc->rx_channel->r_count = 0;
|
||
|
|
||
|
ivc->w_pos = 0;
|
||
|
ivc->r_pos = 0;
|
||
|
|
||
|
/*
|
||
|
* Ensure that counters appear cleared before new state can be
|
||
|
* observed.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* Move to ACK state. We have just cleared our counters, so it
|
||
|
* is now safe for the remote end to start using these values.
|
||
|
*/
|
||
|
ivc->tx_channel->state = ivc_state_ack;
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
|
||
|
|
||
|
/*
|
||
|
* Notify remote end to observe state transition.
|
||
|
*/
|
||
|
ivc->notify(ivc);
|
||
|
} else if (ivc->tx_channel->state == ivc_state_sync &&
|
||
|
peer_state == ivc_state_ack) {
|
||
|
/*
|
||
|
* Order observation of ivc_state_sync before stores clearing
|
||
|
* tx_channel.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* Reset tx_channel counters. The remote end is in the ACK
|
||
|
* state and won't make progress until we change our state,
|
||
|
* so the counters are not in use at this time.
|
||
|
*/
|
||
|
ivc->tx_channel->w_count = 0;
|
||
|
ivc->rx_channel->r_count = 0;
|
||
|
|
||
|
ivc->w_pos = 0;
|
||
|
ivc->r_pos = 0;
|
||
|
|
||
|
/*
|
||
|
* Ensure that counters appear cleared before new state can be
|
||
|
* observed.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* Move to ESTABLISHED state. We know that the remote end has
|
||
|
* already cleared its counters, so it is safe to start
|
||
|
* writing/reading on this channel.
|
||
|
*/
|
||
|
ivc->tx_channel->state = ivc_state_established;
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
|
||
|
|
||
|
/*
|
||
|
* Notify remote end to observe state transition.
|
||
|
*/
|
||
|
ivc->notify(ivc);
|
||
|
} else if (ivc->tx_channel->state == ivc_state_ack) {
|
||
|
/*
|
||
|
* At this point, we have observed the peer to be in either
|
||
|
* the ACK or ESTABLISHED state. Next, order observation of
|
||
|
* peer state before storing to tx_channel.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* Move to ESTABLISHED state. We know that we have previously
|
||
|
* cleared our counters, and we know that the remote end has
|
||
|
* cleared its counters, so it is safe to start writing/reading
|
||
|
* on this channel.
|
||
|
*/
|
||
|
ivc->tx_channel->state = ivc_state_established;
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
|
||
|
|
||
|
/*
|
||
|
* Notify remote end to observe state transition.
|
||
|
*/
|
||
|
ivc->notify(ivc);
|
||
|
} else {
|
||
|
/*
|
||
|
* There is no need to handle any further action. Either the
|
||
|
* channel is already fully established, or we are waiting for
|
||
|
* the remote end to catch up with our current state. Refer
|
||
|
* to the diagram in "IVC State Transition Table" above.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
if (ivc->tx_channel->state != ivc_state_established)
|
||
|
return -EAGAIN;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void tegra_ivc_channel_reset(struct tegra_ivc *ivc)
|
||
|
{
|
||
|
ulong offset;
|
||
|
|
||
|
ivc->tx_channel->state = ivc_state_sync;
|
||
|
offset = offsetof(struct tegra_ivc_channel_header, w_count);
|
||
|
tegra_ivc_flush_counter(ivc, ivc->tx_channel, offset);
|
||
|
ivc->notify(ivc);
|
||
|
}
|
||
|
|
||
|
static int check_ivc_params(ulong qbase1, ulong qbase2, uint32_t nframes,
|
||
|
uint32_t frame_size)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
BUG_ON(offsetof(struct tegra_ivc_channel_header, w_count) &
|
||
|
(TEGRA_IVC_ALIGN - 1));
|
||
|
BUG_ON(offsetof(struct tegra_ivc_channel_header, r_count) &
|
||
|
(TEGRA_IVC_ALIGN - 1));
|
||
|
BUG_ON(sizeof(struct tegra_ivc_channel_header) &
|
||
|
(TEGRA_IVC_ALIGN - 1));
|
||
|
|
||
|
if ((uint64_t)nframes * (uint64_t)frame_size >= 0x100000000) {
|
||
|
pr_err("tegra_ivc: nframes * frame_size overflows\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The headers must at least be aligned enough for counters
|
||
|
* to be accessed atomically.
|
||
|
*/
|
||
|
if ((qbase1 & (TEGRA_IVC_ALIGN - 1)) ||
|
||
|
(qbase2 & (TEGRA_IVC_ALIGN - 1))) {
|
||
|
pr_err("tegra_ivc: channel start not aligned\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (frame_size & (TEGRA_IVC_ALIGN - 1)) {
|
||
|
pr_err("tegra_ivc: frame size not adequately aligned\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (qbase1 < qbase2) {
|
||
|
if (qbase1 + frame_size * nframes > qbase2)
|
||
|
ret = -EINVAL;
|
||
|
} else {
|
||
|
if (qbase2 + frame_size * nframes > qbase1)
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (ret) {
|
||
|
pr_err("tegra_ivc: queue regions overlap\n");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int tegra_ivc_init(struct tegra_ivc *ivc, ulong rx_base, ulong tx_base,
|
||
|
uint32_t nframes, uint32_t frame_size,
|
||
|
void (*notify)(struct tegra_ivc *))
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (!ivc)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ret = check_ivc_params(rx_base, tx_base, nframes, frame_size);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
ivc->rx_channel = (struct tegra_ivc_channel_header *)rx_base;
|
||
|
ivc->tx_channel = (struct tegra_ivc_channel_header *)tx_base;
|
||
|
ivc->w_pos = 0;
|
||
|
ivc->r_pos = 0;
|
||
|
ivc->nframes = nframes;
|
||
|
ivc->frame_size = frame_size;
|
||
|
ivc->notify = notify;
|
||
|
|
||
|
return 0;
|
||
|
}
|